Skip to main content

Advertisement

Log in

The Power of Two-Dimensional Dwell-Time Analysis for Model Discrimination, Temporal Resolution, Multichannel Analysis and Level Detection

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) dwell-time analysis of time series of single-channel patch-clamp current was improved by employing a Hinkley detector for jump detection, introducing a genetic fit algorithm, replacing maximum likelihood by a least square criterion, averaging over a field of 9 or 25 bins in the 2D plane and normalizing per measuring time, not per events. Using simulated time series for the generation of the “theoretical” 2D histograms from assumed Markov models enabled the incorporation of the measured filter response and noise. The effects of these improvements were tested with respect to the temporal resolution, accuracy of the determination of the rate constants of the Markov model, sensitivity to noise and requirement of open time and length of the time series. The 2D fit was better than the classical hidden Markov model (HMM) fit in all tested fields. The temporal resolution of the two most efficient algorithms, the 2D fit and the subsequent HMM/beta fit, enabled the determination of rate constants 10 times faster than the corner frequency of the low-pass filter. The 2D fit was much less sensitive to noise. The requirement of computing time is a problem of the 2D fit (100 times that of the HMM fit) but can now be handled by personal computers. The studies revealed a fringe benefit of 2D analysis: it can reveal the “true” single-channel current when the filter has reduced the apparent current level by averaging over undetected fast gating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Albertsen A., Hansen U.P. 1994. Estimation of kinetic rate constants from multi-channel recordings by a direct fit of the time series. Biophys. J. 67:1393–1403

    PubMed  CAS  Google Scholar 

  • Ashcroft F.M. 2000. Ion Channels and Disease. Academic Press, San Diego

    Google Scholar 

  • Ball F.G., Rice J.A. 1992. Stochastic models for ion channels: Introduction and bibliography. Math. Biosci. 112:189–206

    Article  PubMed  CAS  Google Scholar 

  • Ball F.G., Sansom M.S. 1989. Ion-channel gating mechanisms: Model identification and parameter estimation from single channel recordings. Proc. R. Soc. Lond. B. Biol. Sci. 236:385–416

    PubMed  CAS  Google Scholar 

  • Ball F.G., Yeo G.F., Milne R.K., Edeson R.O., Madsen B.W., Sansom M.S. 1993. Single ion channel models incorporating aggregation and time interval omission. Biophys. J. 64:357–374

    PubMed  CAS  Google Scholar 

  • Blunck R., Kirst U., Riessner T., Hansen U. 1998. How powerful is the dwell-time analysis of multichannel records? J. Membr. Biol. 165:19–35

    Article  PubMed  CAS  Google Scholar 

  • Caceci M.S., Cacheris W.P. 1984. Fitting curves to data - The simplex algorithm is the answer. BYTE 5/84:340–362

    Google Scholar 

  • Caliebe A., Rösler U., Hansen U.P. 2002. A chi2 test for model determination and sublevel detection in ion channel analysis. J. Membr. Biol. 185:25–41

    Article  PubMed  CAS  Google Scholar 

  • Charbonneau P. 2002. An Introduction to Genetic Algorithms for Numerical Optimization. High Altitude Observatory, Boulder, CO

    Google Scholar 

  • Colquhoun D., Hawkes A.G. 1977. Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc. R. Soc. Lond. B. Biol. Sci. 199:231–262

    PubMed  CAS  Google Scholar 

  • Colquhoun D., Hawkes A.G. 1990. Stochastic properties of ion channel openings and bursts in a membrane patch that contains two channels: Evidence concerning the number of channels present when a record containing only single openings is observed. Proc. R. Soc. Lond. B. Biol. Sci. 240:453–477

    PubMed  CAS  Google Scholar 

  • Crouzy S.C., Sigworth F.J. 1990. Yet another approach to the dwell-time omission problem of single-channel analysis. Biophys. J. 58:731–743

    PubMed  CAS  Google Scholar 

  • Doyle D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Draber S., Schultze R. 1994. Correction for missed events based on a realistic model of a detector. Biophys. J. 66:191–201

    PubMed  CAS  Google Scholar 

  • Farokhi A., Keunecke M., Hansen U.P. 2000. The anomalous mole fraction effect in Chara: Gating at the edge of temporal resolution. Biophys. J. 79:3072–3082

    PubMed  CAS  Google Scholar 

  • FitzHugh R. 1983. Statistical properties of the asymmetric random telegraph signal with application to single channel analysis. Math. Biosci. 64:75–89

    Article  Google Scholar 

  • Fredkin D.R., Rice J.A. 1992. Maximum likelihood estimation and identification directly from single-channel recordings. Proc. R. Soc. Lond. B. Biol. Sci. 249:125–132

    Article  CAS  Google Scholar 

  • Fredkin D.R., Rice J.A. 2001. Fast evaluation of the likelihood of an HMM: Ion channel currents with filtering and colored noise. IEEE Trans. Sig. Proc. 49:625–633

    Article  Google Scholar 

  • Ganesan R., Sherman A.T. 1994. Statistical techniques for language recognition: An empirical study using real and simulated English. Cryptologia 18:289–332

    Article  Google Scholar 

  • Hansen U.P., Cakan O., Bshagen-Keunecke M., Farokhi A. 2003. Gating models of the anomalous mole-fraction effect of single-channel current in Chara. J. Membr. Biol. 192:45–63

    Article  PubMed  CAS  Google Scholar 

  • Hansen U.P., Keunecke M., Blunck R. 1997. Gating and permeation models of plant channels. J. Exp. Bot. 48:365–382

    CAS  Google Scholar 

  • Hawkes A.G., Jalali A., Colquhoun D. 1992. Asymptotic distributions of apparent open times and shut times in a single channel record allowing for the omission of brief events. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 337:383–404

    Article  CAS  Google Scholar 

  • Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Holland J. 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  PubMed  CAS  Google Scholar 

  • Kienker P. 1989. Equivalence of aggregated Markov models of ion-channel gating. Proc. R. Soc. Lond. B. Biol. Sci. 236:269–309

    PubMed  CAS  Google Scholar 

  • Klein S., Timmer J., Honerkamp J. 1997. Analysis of multichannel patch clamp recordings by hidden Markov models. Biometrics 53:870–884

    Article  PubMed  CAS  Google Scholar 

  • Klieber H.G., Gradmann D. 1993. Enzyme kinetics of the prime K+ channel in the tonoplast of Chara: Selectivity and inhibition. J. Membr. Biol. 132:253–265

    PubMed  CAS  Google Scholar 

  • Korn S.J., Horn R. 1988. Statistical discrimination of fractal and Markov models of single-channel gating. Biophys. J. 54:871–877

    PubMed  CAS  Google Scholar 

  • Loeptin, U. 1999. Modellidentifikation bei der Untersuchung von Ionenkanälen. Diploma thesis, University of Kiel

  • Long S.B., Campbell E.B., MacKinnon R. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  Google Scholar 

  • Long S.B., Campbell E.B., MacKinnon R. 2005b. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 309:903–908

    Article  CAS  Google Scholar 

  • Magleby K.L., Weiss D.S. 1990a. Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise. Biophys. J. 58:1411–1426

    CAS  Google Scholar 

  • Magleby K.L., Weiss D.S. 1990b. Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc. R. Soc. Lond. B. Biol. Sci. 241:220–228

    Article  CAS  Google Scholar 

  • McManus O.B., Blatz A.L., Magleby K.L. 1987. Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. Pfluegers Arch. 410:530–553

    Article  CAS  Google Scholar 

  • Michalek S., Lerche H., Wagner M., Mitrovic N., Schiebe M., Lehmann-Horn F., Timmer J. 1999. On identification of Na+ channel gating schemes using moving-average filtered hidden Markov models. Eur. Biophys. J. 28:605–609

    Article  PubMed  CAS  Google Scholar 

  • Parzefall F., Wilhelm R., Heckmann M., Dudel J. 1998. Single channel currents at six microsecond resolution elicited by acetylcholine in mouse myoballs. J. Physiol. 512:181–188

    Article  PubMed  CAS  Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A., Vetteling W.T. 1989. Numerical Recipes in Pascal, Cambridge University Press, Cambridge pp. 326–330

    Google Scholar 

  • Qin F., Auerbach A., Sachs F. 2000. Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys. J. 79:1928–1944

    PubMed  CAS  Google Scholar 

  • Rechenberg I. 1973. Evolutionsstrategie. Fromman-Hozboog Verlag, Stuttgart

    Google Scholar 

  • Riessner, T. 1998. Level detection and extended beta distributions for the analysis of fast rate constants of Markov processes in sampled data. PhD diss., University of Kiel

  • Riessner T., Woelk F., Abshagen-Keunecke M., Caliebe A., Hansen U.P. 2002. A new level detector for ion channel analysis. J. Membr. Biol. 189:105–118

    Article  PubMed  CAS  Google Scholar 

  • Rosales R.A., Fitzgerald W.J., Hladky S.B. 2002. Kernel estimates for one- and two-dimensional ion channel dwell-time densities. Biophys. J. 82:29–35

    PubMed  CAS  Google Scholar 

  • Sakmann B., Neher E. 1995. Single-Channel Recordings. Plenum Press, New York

    Google Scholar 

  • Schroeder I., Hansen U.P. 2006. Strengths and limits of beta distributions as a means of reconstructing the true single-channel current in patch clamp time series with fast gating. J. Membr. Biol. 210:199–212

    Article  PubMed  CAS  Google Scholar 

  • Schroeder I., Harlfinger P., Huth T., Hansen U.P. 2005. A subsequent fit of time series and amplitude histogram of patch-clamp records reveals rate constants up to 1 per microsecond. J. Membr. Biol. 203:83–99

    Article  CAS  Google Scholar 

  • Schroeder I., Huth T., Suitchmezian V., Jarosik J., Schnell S., Hansen U.P. 2004. Distributions-per-level: A means of testing level detectors and models of patch-clamp data. J. Membr. Biol. 197:49–58

    Article  CAS  Google Scholar 

  • Schultze R., Draber S. 1993. A nonlinear filter algorithm for the detection of jumps in patch-clamp data. J. Membr. Biol. 132:41–52

    PubMed  CAS  Google Scholar 

  • Schulz-DuBois E.O., Rehberg I. 1981. Structure function in lieu of correlation function. Appl. Phys. 24:323–329

    Article  Google Scholar 

  • Singh A.C., Sutradhar B.C. 1989. Testing proportions for Markov dependent Bernolli trials. Biometrika 76:809–813

    Article  Google Scholar 

  • Townsend C., Horn R. 1999. Interaction between the pore and a fast gate of the cardiac sodium channel. J. Gen. Physiol. 113:321–332

    Article  PubMed  CAS  Google Scholar 

  • Venkataramanan L., Kuc R., Sigworth F.J. 1998a. Identification of Hidden Markov models for ion channel currents - Part I: Colored background noise. IEEE Trans. Sig. Proc. 46:1901–1915

    Article  Google Scholar 

  • Venkataramanan L., Kuc R., Sigworth F.J. 1998b. Identification of Hidden Markov models for ion channel currents - Part II: State-dependent excess noise. IEEE Trans. Sig. Proc. 46:1916–1929

    Article  Google Scholar 

  • Venkataramanan L., Kuc R., Sigworth F.J. 2000. Identification of Hidden Markov models for ion channel currents - Part III: Bandlimited, campled data. IEEE Trans. Sig. Proc. 48:376–385

    Article  Google Scholar 

  • Venkataramanan L., Sigworth F.J. 2002. Applying Hidden Markov models to the analysis of single ion channel activity. Biophys. J. 82:1930–1942

    Article  PubMed  CAS  Google Scholar 

  • Wall, M.B. 1996. A genetic algorithm for resource-constrained scheduling. PhD diss., Massachusetts Institute of Technology

  • White P.J., Ridout M.S. 1998. The estimation of rapid rate constants from current-amplitude frequency distributions of single-channel recordings. J. Membr. Biol. 161:115–129

    Article  PubMed  CAS  Google Scholar 

  • Yellen G. 1984. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J. Gen. Physiol. 84:157–186

    Article  PubMed  CAS  Google Scholar 

  • Yeo G.F., Milne R.K., Edeson R.O., Madsen B.W. 1988. Statistical inference from single channel records: Two-state Markov model with limited time resolution. Proc. R. Soc. Lond. B. Biol. Sci. 235:63–94

    PubMed  CAS  Google Scholar 

  • Zheng J., Venkataramanan L., Sigworth F.J. 2001. Hidden Markov model analysis of intermediate gating steps associated with the pore gate of Shaker potassium channels. J. Gen. Physiol. 118:547–564

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Amke Caliebe for statistical advice. This work was supported by the Deutsche Forschungsgemeinschaft (Ha712/11-3, Ha 712/14-2) and the Bundesministerium für Bïldung und Forschung (03F0261A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf-Peter Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huth, T., Schroeder, I. & Hansen, UP. The Power of Two-Dimensional Dwell-Time Analysis for Model Discrimination, Temporal Resolution, Multichannel Analysis and Level Detection. J Membrane Biol 214, 19–32 (2006). https://doi.org/10.1007/s00232-006-0074-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0074-6

Keywords

Navigation