Skip to main content
Log in

Cholesterol in Negatively Charged Lipid Bilayers Modulates the Effect of the Antimicrobial Protein Granulysin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The release of granulysin, a 9-kDa cationic protein, from lysosomal granules of cytotoxic T lymphocytes and natural killer cells plays an important role in host defense against microbial pathogens. Granulysin is endocytosed by the infected target cell via lipid rafts and kills subsequently intracellular bacteria. The mechanism by which granulysin binds to eukaryotic and prokaryotic cells but lyses only the latter is not well understood. We have studied the effect of granulysin on large unilamellar vesicles (LUVs) and supported bilayers with prokaryotic and eukaryotic lipid mixtures or model membranes with various lipid compositions and charges. Binding of granulysin to bilayers with negative charges, as typically found in bacteria and lipid rafts of eukaryotic cells, was shown by immunoblotting. Fluorescence release assays using LUV revealed an increase in permeability of prokaryotic, negatively charged and lipid raft-like bilayers devoid of cholesterol. Changes in permeability of these bilayers could be correlated to defects of various sizes penetrating supported bilayers as shown by atomic force microscopy. Based on these results, we conclude that granulysin causes defects in negatively charged cholesterol-free membranes, a membrane composition typically found in bacteria. In contrast, granulysin is able to bind to lipid rafts in eukaryotic cell membranes, where it is taken up by the endocytotic pathway, leaving the cell intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Anderson D.H., Sawaya M.R., Cascio D., Ernst W., Modlin R., Krensky A., Eisenberg D. 2003. Granulysin crystal structure and a structure-derived lytic mechanism. J. Mol. Biol. 325:355–365

    Article  PubMed  CAS  Google Scholar 

  • Andersson M., Gunne H., Agerberth B., et al. 1995. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J. 14:1615–1625

    PubMed  CAS  Google Scholar 

  • Arispe N., Doh M. 2002. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AßP (1–40) and (1–42) peptides. FASEB J. 16:1526–1536

    Article  PubMed  CAS  Google Scholar 

  • Armstrong J.A., Hart P.D. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134:713–740

    Article  PubMed  CAS  Google Scholar 

  • Bacia K., Scherfeld D., Kahya N., Schwille P. 2004. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87:1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Brown D.A., London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  • Brown R. 1998. Sphingolipid organization in biomembranes: What physical studies of model membranes reveal. J. Cell Sci. 111:1–9

    PubMed  CAS  Google Scholar 

  • Bruhn H., Leippe M. 1999. Comparative modeling of amoebapores and granulysin based on the NK-lysin structure-structural and functional implications. Biol. Chem. 380:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Cambi A., de Lange F., van Maarseveen N.M., Nijhuis M., Joosten B., van Dijk E.M., de Bakker B.I., Fransen J.A., Bovee-Geurts P.H., van Leeuwen F.N., Van Hulst N.F., Figdor C.G. 2004. Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J. Cell. Biol. 164:145–155

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain A.K., Bowie J.U. 2004. Asymmetric amino acid compositions of transmembrane ß-strands. Protein Sci. 13:2270–2274

    Article  PubMed  CAS  Google Scholar 

  • Clayberger C., Krensky A.M. 2003. Granulysin. Curr. Opin. Immunol. 15:560–565

    Article  PubMed  CAS  Google Scholar 

  • Flynn J., Chan J., Triebold K., Dalton D., Stewart T., Bloom B. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:2249–2254

    Article  PubMed  CAS  Google Scholar 

  • Gaillard J.L., Berche P., Mounier J., Richard S., Sansonetti P. 1987. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun. 55:2822–2829

    PubMed  CAS  Google Scholar 

  • Geisow M.J., Evans W.H. 1984. pH in the endosome. Measurements during pinocytosis and receptor-mediated endocytosis. Exp. Cell Res. 150:36–46

    Article  PubMed  CAS  Google Scholar 

  • Gidalevitz D., Ishitsuka Y., Muresan A.S., Konovalov O., Waring A.J., Lehrer R.I., Lee K.Y.C. 2003. Interaction of antimicrobial peptide protegrin with biomembranes. Proc. Natl. Acad. Sci. U.S.A. 100:6302–6307

    Article  PubMed  CAS  Google Scholar 

  • Giocondi M.C., Milhiet P.E., Dosset P., Le Grimellec C. 2004. Use of cyclodextrin for AFM monitoring of model raft formation. Biophys. J. 86:861–869

    PubMed  CAS  Google Scholar 

  • Hanson D.A., Kaspar A.A., Poulain F.R., Krensky A.M. 1999. Biosynthesis of granulysin, a novel cytolytic molecule. Mol. Immunol. 36:413–422

    Article  PubMed  CAS  Google Scholar 

  • Huijbregts R.P., de Kroon A.I., de Kruijff B. 2000. Topology and transport of membrane lipids in bacteria. Biochim. Biophys. Acta. 1469:43–61

    PubMed  CAS  Google Scholar 

  • Jass J., Tjarnhage T., Puu G. 2000. From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: An atomic force microscopy study. Biophys. J. 79:3153–3163

    PubMed  CAS  Google Scholar 

  • Kaspar A.A., Okada S., Kumar J., Poulain F.R., Drouvalakis K.A., Kelekar A., Hanson D.A., Kluck R.M., Hitoshi Y., Johnson D.E., Froelich C.J., Thompson C.B., Newmeyer D.D., Anel A., Clayberger C., Krensky A.M. 2001. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J. Immunol. 167:350–356

    PubMed  CAS  Google Scholar 

  • Kaufmann S.H.E. 1999. Cell-mediated immunity: Dealing a direct blow to pathogens. Curr. Biol. 9:R97-R99

    Article  PubMed  CAS  Google Scholar 

  • Krensky A.M. 2000. Granulysin: A novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem. Pharmacol. 59:317–320

    Article  PubMed  CAS  Google Scholar 

  • Kurz A., Viertel D., Herrmann A., Muller K. 2005. Localization of phosphatidylserine in boar sperm cell membranes during capacitation and acrosome reaction. Reproduction 130:615–626

    Article  PubMed  CAS  Google Scholar 

  • Liepinsh E., Andersson M., Ruysschaert J.M., Otting G. 1997. Saposin fold revealed by the NMR structure of NK-lysin. Nat. Struct. Biol. 4:793–795

    Article  PubMed  CAS  Google Scholar 

  • Lynch E.C., Rosenberg I.M., Gitler C. 1982. An ion-channel forming protein produced by Entamoeba histolytica. EMBO J. 1:801–804

    PubMed  CAS  Google Scholar 

  • Manes S., del Real G., Martinez A.C. 2003. Pathogens: Raft hijackers. Nat. Rev. Immunol. 3:557–568

    Article  PubMed  CAS  Google Scholar 

  • McMullen T.P., McElhaney R.N. 1997. Differential scanning calorimetric studies of the interaction of cholesterol with distearoyl and dielaidoyl molecular species of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Biochemistry 36:4979–4986

    Article  PubMed  CAS  Google Scholar 

  • Mombelli E., Morris R., Taylor W., Fraternali F. 2003. Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: A molecular dynamics study. Biophys. J. 84:1507–1517

    PubMed  CAS  Google Scholar 

  • Morimoto S., Martin B.M., Kishimoto Y., O’Brien J.S. 1988. Saposin D: A sphingomyelinase activator. Biochem. Biophys. Res. Commun. 156:403–410

    Article  PubMed  CAS  Google Scholar 

  • Morimoto S., Martin B.M., Yamamoto Y., Kretz K.A., O’Brien J.S., Kishimoto Y. 1989. Saposin A: Second cerebrosidase activator protein. Proc. Natl. Acad. Sci. U.S.A. 86:3389–3393

    Article  PubMed  CAS  Google Scholar 

  • Munford R., Sheppard P., O’Hara P. 1995. Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. J. Lipid Res. 36:1653–1663

    PubMed  CAS  Google Scholar 

  • Niu S.L., Litman B.J. 2002. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: Effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys. J. 83:3408–3415

    Article  PubMed  CAS  Google Scholar 

  • O’Brien J., Kishimoto Y. 1991. Saposin proteins: Structure, function, and role in human lysosomal storage disorders. FASEB J. 5:301–308

    PubMed  CAS  Google Scholar 

  • Ohtake S., Schebor C., de Pablo J.J. 2006. Effects of trehalose on the phase behavior of DPPC-cholesterol unilamellar vesicles. Biochim. Biophys. Acta. 1758:65–73

    Article  PubMed  CAS  Google Scholar 

  • Pena S.V., Krensky A.M. 1997. Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin. Immunol. 9:117–125

    Article  PubMed  CAS  Google Scholar 

  • Pomorski T., Holthuis J.C.M., Herrmann A., van Meer G. 2004. Tracking down lipid flippases and their biological functions. J. Cell Sci. 117:805–813

    Article  PubMed  CAS  Google Scholar 

  • Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423

    Article  PubMed  CAS  Google Scholar 

  • Pralle A., Keller P., Florin E.-L., Simons K., Horber J.K.H. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Qi X., Grabowski G.A. 2001. Differential membrane interactions of saposins A and C. Implications for the functional specificity. J. Biol. Chem. 276:27010–27017

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy A., Thennarasu S., Tan A., Lee D.K., Clayberger C., Krensky A.M. 2006. Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin. Biochim. Biophys. Acta. 1758:154–163

    Article  PubMed  CAS  Google Scholar 

  • Renswoude J.V., Bridges K.R., Harford J.B., Klausner R.D. 1982. Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment. Proc. Natl. Acad. Sci. U.S.A. 79:6186–6190

    Article  PubMed  Google Scholar 

  • Shai Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta. 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Simons K., Vaz W.L. 2004. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33:269–295

    Article  PubMed  CAS  Google Scholar 

  • Slotte J.P. 1999. Sphingomyelin-cholesterol interactions in biological and model membranes. Chem. Phys. Lipids 102:13–27

    Article  PubMed  CAS  Google Scholar 

  • Smyth M.J., Kelly J.M., Sutton V.R., Davis J.E., Browne K.A., Sayers T.J., Trapani J.A. 2001. Unlocking the secrets of cytotoxic granule proteins. J. Leukocyte Biol. 70:18–29

    PubMed  CAS  Google Scholar 

  • Stegelmann F., Bastian M., Swoboda K., Bhat R., Kiessler V., Krensky A.M., Roellinghoff M., Modlin R.L., Stenger S. 2005. Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8 + T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 175:7474–7483

    PubMed  CAS  Google Scholar 

  • Stenger S., Hanson D.A., Teitelbaum R., Dewan P., Niazi K.R., Froelich C.J., Ganz T., Thoma-Uszynski S., Melian A., Bogdan C., Porcelli S.A., Bloom B.R., Krensky A.M., Modlin R.L. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125

    Article  PubMed  CAS  Google Scholar 

  • Tannert A., Pohl A., Pomorski T., Herrmann A. 2003. Protein-mediated transbilayer movement of lipids in eukaryotes and prokaryotes: The relevance of ABC transporters. Int. J. Antimicrob. Agents 22:177–187

    Article  PubMed  CAS  Google Scholar 

  • Tong J., McIntosh T.J. 2004. Structure of supported bilayers composed of lipopolysaccharides and bacterial phospholipids: Raft formation and implications for bacterial resistance. Biophys. J. 86:3759–3771

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro A.M., Ciaffoni F., Tatti M., Salvioli R., Barca A., Tognozzi D., Scerch C. 1995. pH-dependent conformational properties of saposins and their interactions with phospholipid membranes. J. Biol. Chem. 270:30576–30580

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro A.M., Salvioli R., Tatti M., Ciaffoni F. 1999. Saposins and their interaction with lipids. Neurochem. Res. 24:307–314

    Article  PubMed  CAS  Google Scholar 

  • Walch M., Eppler E., Dumrese C., Barman H., Groscurth P., Ziegler U. 2005. Uptake of granulysin via lipid rafts leads to lysis of intracellular Listeria innocua. J. Immunol. 174:4220–4227

    PubMed  CAS  Google Scholar 

  • Young J.D., Young T.M., Lu L.P., Unkeless J.C., Cohn Z.A. 1982. Characterization of a membrane pore-forming protein from Entamoeba histolytica. J. Exp. Med. 156:1677–1690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to A. Vogetseder and M. Le Hir for critical discussion of the manuscript, G. Barmettler for excellent technical help and M. Scott of the Functional Genomics Center at the University of Zurich for help during experiments using a Biacore (Uppsala, Sweden). We thank the Rudolf and Fridl Buck Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barman, H., Walch, M., Latinovic-Golic, S. et al. Cholesterol in Negatively Charged Lipid Bilayers Modulates the Effect of the Antimicrobial Protein Granulysin. J Membrane Biol 212, 29–39 (2006). https://doi.org/10.1007/s00232-006-0040-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0040-3

Keywords

Navigation