Skip to main content
Log in

Interactions between Impermeant Blocking Ions in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore: Evidence for Anion-Induced Conformational Changes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

It is well known that extracellular Cl ions can weaken the inhibitory effects of intracellular open channel blockers in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel pore. This effect is frequently attributed to repulsive ion-ion interactions inside the pore. However, since Cl ions are permeant in CFTR, it is also possible that extracellular Cl ions are directly competing with intracellular blocking ions for a common binding site; thus, this does not provide direct evidence for multiple, independent anion binding sites in the pore. To test for the possible through-space nature of ion-ion interactions inside the CFTR pore, we investigated the interaction between impermeant anions applied to either end of the pore. We found that inclusion of low concentrations of impermeant Pt(NO2) 2−4 ions in the extracellular solution weaken the blocking effects of three different intracellular blockers [Pt(NO2) 2−4 , glibenclamide and 5-nitro-2-(3-phenylpropylamino)benzoic acid] without affecting their apparent voltage dependence. However, the effects of extracellular Pt(NO2) 2−4 ions are too strong to be accounted for by simple competitive models of ion binding inside the pore. In addition, extracellular Fe(CN) 3−6 ions, which do not appear to enter the pore, also weaken the blocking effects of intracellular Pt(NO2) 2−4 ions. In contrast to previous models that invoked interactions between anions bound concurrently inside the pore, we propose that Pt(NO2) 2−4 and Fe(CN) 3−6 binding to an extracellularly accessible site outside of the channel permeation pathway alters the structure of an intracellular anion binding site, leading to weakened binding of intracellular blocking ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Cai Z., Scott-Ward T.S., Li H., Schmidt A., Sheppard D.N. 2004. Strategies to investigate the mechanism of action of CFTR modulators. J. Cyst. Fibros. 3(Suppl. 2):141–147

    Article  PubMed  CAS  Google Scholar 

  • Chang X.-B., Kartner N., Seibert F.S., Aleksandrov A.A., Kloser A.W., Kiser G., Riordan J.R. 1998. Heterologous expression systems for study of cystic fibrosis transmembrane conductance regulator. Methods Enzymol. 292:616–629

    Article  PubMed  CAS  Google Scholar 

  • Cohen J., Schulten K. 2004. Mechanism of anionic conduction across ClC. Biophys. J. 86:836–845

    Article  PubMed  CAS  Google Scholar 

  • Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R., Campbell E.B., MacKinnon R. 2003. Gating the selectivity filter in ClC chloride channels. Science 300:108–112

    Article  PubMed  CAS  Google Scholar 

  • Ge N., Muise C.N., Gong X., Linsdell P. 2004. Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Biol. Chem. 279:55283–55289

    Article  PubMed  CAS  Google Scholar 

  • Gong X., Burbridge S.M., Cowley E.A., Linsdell P. 2002a. Molecular determinants of Au(CN) -2 binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl channel pore. J. Physiol. 540:39–47

    Article  CAS  Google Scholar 

  • Gong X., Burbridge S.M., Lewis A.C., Wong P.Y.D., Linsdell P. 2002b. Mechanism of lonidamine inhibition of the CFTR chloride channel. Br. J. Pharmacol. 137:928–936

    Article  CAS  Google Scholar 

  • Gong X., Linsdell P. 2003a. Coupled movement of permeant and blocking ions in the CFTR chloride channel pore. J. Physiol. 549:375–385

    Article  CAS  Google Scholar 

  • Gong X., Linsdell P. 2003b. Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore. J. Gen. Physiol. 122:673–687

    Article  CAS  Google Scholar 

  • Gupta J., Linsdell P. 2002. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Pfluegers Arch. 443:739–747

    Article  CAS  Google Scholar 

  • Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Immke D., Wood M., Kiss L., Korn S.J. 1999. Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore. J. Gen. Physiol. 113:819–836

    Article  PubMed  CAS  Google Scholar 

  • Lindemann B., van Driessche W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195:292–294

    PubMed  CAS  Google Scholar 

  • Linsdell P. 2005. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J. Biol. Chem. 280:8945–8950

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P. 2006. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp. Physiol. 91:123–129

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P., Gong X. 2002. Multiple inhibitory effects of Au(CN) -2 ions on cystic fibrosis transmembrane conductance regulator Cl channel currents. J. Physiol. 540:29–39

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P., Hanrahan J.W. 1996a. Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J. Physiol. 496:687–693

    CAS  Google Scholar 

  • Linsdell P., Hanrahan J.W. 1996b. Flickery block of single CFTR chloride channels by intracellular anions and osmolytes. Am. J. Physiol. Cell Physiol. 271:C628–C634

    CAS  Google Scholar 

  • Linsdell P., Hanrahan J.W. 1998. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Gen. Physiol. 111:601–614

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P., Hanrahan J.W. 1999. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel. Br. J. Pharmacol. 126:1471–1477

    Article  PubMed  CAS  Google Scholar 

  • Linsdell P., Tabcharani J.A., Hanrahan J.W. 1997. Multi-ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Gen. Physiol. 110:365–377

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R. 2003. Potassium channels. FEBS Lett. 555:62–65

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R., Miller C. 1988. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J. Gen. Physiol. 91:335–349

    Article  PubMed  CAS  Google Scholar 

  • McDonough S., Davidson N., Lester H.A., McCarty N.A. 1994. Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634

    Article  PubMed  CAS  Google Scholar 

  • Newland C.F., Adelman J.P., Tempel B.L., Almers W. 1992. Repulsion between tetraethylammonium ions in cloned voltage-gated potassium channels. Neuron 8:975–982

    Article  PubMed  CAS  Google Scholar 

  • Neyton J., Miller C. 1988. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J. Gen. Physiol. 92:569-586

    Article  PubMed  CAS  Google Scholar 

  • Sather W.A., McCleskey E.W. 2003. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65:133–159

    Article  PubMed  CAS  Google Scholar 

  • Schultz B.D., DeRoos A.D.G., Venglarik C.J., Singh A.K., Frizzell R.A., Bridges R.J. 1996. Glibenclamide blockade of CFTR chloride channels. Am. J. Physiol. Lung Cell Mol. Physiol. 271:L192–L200

    CAS  Google Scholar 

  • Scott-Ward T.S., Li H., Schmidt A., Cai Z., Sheppard D.N. 2004. Direct block of the cystic fibrosis transmembrane conductance regulator Cl channel by niflumic acid. Mol. Membr. Biol. 21:27–38

    Article  CAS  PubMed  Google Scholar 

  • Shcheynikov N., Kim K.H., Kim K., Dorwart M.R., Ko S.B.H., Goto H., Naruse S., Thomas P.J., Muallem S. 2004. Dynamic control of cystic fibrosis transmembrane conductance regulator Cl/HCO -3 selectivity by external Cl. J. Biol. Chem. 279:21857–21865

    Article  PubMed  CAS  Google Scholar 

  • Sheppard D.N., Robinson K.A. 1997. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J. Physiol. 503:333–346

    Article  PubMed  CAS  Google Scholar 

  • Spassova M., Lu Z. 1999. Tuning the voltage dependence of tetraethylammonium block with permeant ions in an inward-rectifier K+ channel. J. Gen. Physiol. 114:415–426

    Article  PubMed  CAS  Google Scholar 

  • Thompson J., Begenisich T. 2000. Interaction between quaternary ammonium ions in the pore of potassium channels. Evidence against an electrostatic repulsion mechanism. J. Gen. Physiol. 115:769–782

    Article  PubMed  CAS  Google Scholar 

  • Venglarik C.J., Schultz B.D., DeRoos A.D.G., Singh A.K., Bridges R.J. 1996. Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regulator Cl channels. Biophys. J. 70:2696–2703

    PubMed  CAS  Google Scholar 

  • Woodhull A.M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687–708

    Article  PubMed  CAS  Google Scholar 

  • Wright A.M., Gong X., Verdon B., Linsdell P., Mehta A., Riordan J.R., Argent B.E., Gray M.A. 2004. Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by external chloride. J. Biol. Chem. 279:41658–41663

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z.-R., Zeltwanger S., McCarty N.A. 2000. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J. Membr. Biol. 175:35–52

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z.-R., Zeltwanger S., McCarty N.A. 2004. Steady-state interactions of glibenclamide with CFTR: Evidence for multiple sites in the pore. J. Membr. Biol. 199:15–28

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z., Hu S., Hwang T.-C. 2001a. Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore. J. Gen. Physiol. 532:435–448

    CAS  Google Scholar 

  • Zhou Z., Hu S., Hwang T.-C. 2002. Probing an open CFTR pore with organic anion blockers. J. Gen. Physiol. 120:647–662

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y., Morais-Cabral J.H., Kaufman A., MacKinnon R. 2001b. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Chantal St. Aubin for providing the single-channel data shown in Figure 6A and Kellie Davis and Jeremy Roy for technical assistance. This work was supported by the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linsdell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, N., Linsdell, P. Interactions between Impermeant Blocking Ions in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore: Evidence for Anion-Induced Conformational Changes. J Membrane Biol 210, 31–42 (2006). https://doi.org/10.1007/s00232-005-7028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-7028-2

Keywords

Navigation