Skip to main content
Log in

Vitamin C Pretreatment Attenuates Hypoxia-Induced Disturbance of Sodium Currents in Guinea Pig Ventricular Myocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

As an important in vivo antioxidant, vitamin C is commonly used clinically to alleviate hypoxia-induced heart symptoms. To approach the protective mechanisms of vitamin C on hearts during hypoxia, we investigated the electrophysiological effects of vitamin C (1 mM, pretreated before hypoxia) on Na+ currents (including transient and persistent Na+ currents) in guinea pig ventricular myocytes during hypoxia by the whole-cell and single-channel patch-clamp techniques. Whole-cell recordings showed that the mean current density of I NaT in the hypoxia group decreased from the control value of 40.2142 ± 1.7735 to 27.1663 ± 1.8441 pA/pF and current density of I NaP increased from 0.3987 ± 0.0474 to 1.1854 ± 01994 pA/pF (n = 9, P < 0.05 vs. control) at 15 min. However, when vitamin C was administered before hypoxia as pretreatment, I NaT and I NaP varied moderately (mean current density of I NaT decreasing from 41.6038 ± 2.9762 to 34.6341 ± 1.9651 pA/pF and current density of I NaP increasing from 0.3843 ± 0.0636 to 0.6734 ± 0.1057 pA/pF; n = 9, P < 0.05 vs. hypoxia group). Single-channel recordings (cell-patched) showed that the mean open probability and open time of I NaP increased significantly in both groups at hypoxia 15 min. However, the increased current values of the hypoxia group were still marked at hypoxia 15 min (n = 9, P < 0.05 vs. vitamin C + hypoxia group). Our results indicate that vitamin C can attenuate the disturbed effects of hypoxia on Na+ currents (I NaT and I NaP) of cardiac myocytes in guinea pigs effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antzelevitch C. 2000. Electrical heterogeneity, cardiac arrhythmias, and the sodium channel. J. Circ. Res. 87:964–965

    CAS  Google Scholar 

  • Bandyopadhyay D., Chattopadhyay A., Ghosh G., Datta A.G. 2004. Oxidative stress-induced ischemic heart disease: Protection by antioxidants. J. Curr. Med. Chem. 11:369–387

    Article  CAS  Google Scholar 

  • Barrington P.L., Martin R.L., Zhang K. 1997. Slowly inactivating sodium currents are reduced by exposure to oxidative stress. J. Mol. Cell. Cardiol. 29:3251–3265

    Article  PubMed  CAS  Google Scholar 

  • Becker B.F., Kupatt C., Massoudy P., Zahler S. 2000. Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion. Z. Kardiol. 89 (Suppl. 9):IX/88–IX/91

    CAS  Google Scholar 

  • Bielefeldt C.A., Whiteis M.W., Chapleau M.W., Abboud F.M. 1999. Nitric oxide enhances slow inactivation of voltage-dependent sodium currents in rat nodose neurons. Neurosci. Lett. 271:159–162

    Article  PubMed  CAS  Google Scholar 

  • Bielefeldt K., Whiteis C.A., Sharma R.V., Abboud F.M., Conklin J.L. 1997. Reactive oxygen species and calcium homeostasis in intestinal smooth muscle cells. Am. J. Physiol. 272:G1439–G1450

    PubMed  CAS  Google Scholar 

  • Carr A.C.F.B. 1999. Vitamin C and cardiovascular disease. In: L. Cadenas, editor. Handbook of Antioxidants, 2nd ed., Marcel Dekker, Los Angeles pp. 147–165

    Google Scholar 

  • Carr A.C., Frei B. 1999. Does vitamin C act as pro-oxidant under physiological conditions? The Federation of American Societies for Experimental Biology. FASEB J. 13:1007–1024

    PubMed  CAS  Google Scholar 

  • Cochrane, C. 1991. Cellular injury by oxidants. Am. J. Med. 91(Suppl. 3C):S23-S30

    Article  Google Scholar 

  • Daly, P., Sole, M.J. 1990. Myocardial catecholamines and the pathopysiology of heart failure. Circulation 82 (Suppl. l):1–35

    Google Scholar 

  • Das D.K., Maulik N. 1994. Antioxidant effectiveness in ischemia-reperfusion tissue injury. J. Methods Enzymol. 233:601–610

    Article  CAS  Google Scholar 

  • Dhalla N.S., Temsah R.M., Netticadan T. 2000. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18:655–673

    Article  PubMed  CAS  Google Scholar 

  • Duell, P. B. 1996. J. Nutr. 126:1067S

  • Duranteau J., Chandel N.S., Kulisz A., Shao Z., Schumacker P.T. 1998. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J. Biol. Chem. 273:11619–11624

    Article  PubMed  CAS  Google Scholar 

  • Erbs S., Gielen S., Linke A., et al. 2003. Improvement of peripheral endothelial dysfunction by acute vitamin C application: Different effects in patients with coronary artery disease, ischemic, and dilated cardiomyopathy. Am. Heart J. 146:280–285

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R., Ceconi C., Curello S., et al. 1991. Oxygen free radicals and myocardial damage: Protective role of thiol-containing agents. Am. J. Med. 91:95S–105S

    Article  PubMed  CAS  Google Scholar 

  • Gao F., Yao C.L., Gao E., et al. 2002. Enhancement of glutathione cardioprotection by ascorbic acid in myocardial reperfusion injury. J. Pharmacol. Exp. Ther. 301:543–550

    Article  PubMed  CAS  Google Scholar 

  • Grech E.D., Jackson M., Ramsdale D.R. 1995. Reperfusion injury after acute myocardial infarction. Br. Med. J. 310:477–478

    CAS  Google Scholar 

  • Guaiquil V.H., Golde D.W., Beckles D.L., Mascareno E.J., Siddiqui M.A.Q. 2004. Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. J. Free Radic. Biol. Med. 37:1419–1429

    Article  CAS  Google Scholar 

  • Guaiquil V.H., Vera J.C., Golde D.W. 2001. Mechanism of vitamin C inhibition of cell death induced by oxidative stress in glutathione-depleted HL−60 cells. J. Biol. Chem. 276:40955–40961

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B.G.J. editor 1999. Free Radicals in Biology and Medicine, 3rd ed., Oxford University Press, Oxford

    Google Scholar 

  • Hammarstrom A.K., Gage P.W. 1998. Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J. Physiol. 510:735–741

    Article  PubMed  Google Scholar 

  • Hammarstrom A.K., Gage P.W. 1999. Nitric oxide increases persistent sodium current in rat hippocampal neurons. J. Physiol. 520:451–461

    Article  PubMed  CAS  Google Scholar 

  • Harsdorf R., Li P.F., Dietz R. 1999. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. J. Circ. 99:2934–2941

    Google Scholar 

  • Hayes N., McLellan L.I. 1999. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. J. Free Radic. Res. 31:273–300

    Article  CAS  Google Scholar 

  • Hensley K., Robinson K.A., Gabbita S.P., Salsman S., Floyd R.A. 2000. Reactive oxygen species, cell signaling, and cell injury. J. Free Radic. Biol. Med. 28:1456–1462

    Article  CAS  Google Scholar 

  • Ju Y.K., Saint D.A., Gage P.W. 1996. Hypoxia increases persistent sodium current in rat ventricular myocytes. J. Physiol. 497:337–347

    PubMed  CAS  Google Scholar 

  • Kitts, D. D. 1997. An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci. Technol. 8:198–203

    Article  CAS  Google Scholar 

  • Kiyosue T., Arita M. 1989. Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. J. Circ Res. 64:389–397

    CAS  Google Scholar 

  • Lefer A.M., Lefer D.J. 1993. Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu. Rev. Pharmacol. Toxicol. 33:71–90

    Article  PubMed  CAS  Google Scholar 

  • Lefer D.J., Granger D.N. 2000. Oxidative stress and cardiac disease. Am. J. Med. 109:315–323

    Article  PubMed  CAS  Google Scholar 

  • Levi A.J., Dalton G.R., Hancox J.C., et al. 1997. Role of intracellular sodium overload in the genesis of cardiac arrhythmias. J. Cardiovasc. Electrophysiol. 8:700–721

    PubMed  CAS  Google Scholar 

  • Li Z., Chapleau M.W., Bates J.N., Bielefeidt K., Lee H.C., Abboud F.M. 1998. Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. J. Neuron 20:1039–1049

    Article  CAS  Google Scholar 

  • Luo A.T., Ma J.H., Zhang P.H. 2005. Effect of hydrogen peroxide on persistent sodium current and action potential in guinea pig ventricular myocytes. Acta Pharmacol. Sin. 26:769–896

    Article  CAS  Google Scholar 

  • Molyneux C.A., Glyn M.C., Ward B.J. 2002. Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: The protective effect of antioxidant vitamins. J. Microvasc. Res. 64:265–277

    Article  CAS  Google Scholar 

  • Sakmann B.F., Spindler A.J., Bryant S.M., et al. 2000. Distribution of a persistent sodium current across the ventricular wall in guinea pigs. J. Circ Res. 87:910–914

    CAS  Google Scholar 

  • Senthil S., Veerappan R.M., Ramakrishna Rao M., Pugalendi K.V. 2004. Oxidative stress and antioxidants in patients with cardiogenic shock complicating acute myocardial infarction. Clin. Chim. Acta 348:131–137

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E.R. 1991. Ascorbic acid and oxidative inactiviation of proteins. Am. J. Clin. Nutr. 54:1125s

    PubMed  CAS  Google Scholar 

  • Sugiyama A., Hashimoto K. 1999. Can the MAP technique be applied to detect delayed after depolarization? Electrophysiologic and pharmacologic evidence. J. Cardiovasc. Pharmacol 34:46–52

    Article  PubMed  CAS  Google Scholar 

  • Teramoto K., Daimon M., Hasegawa R., et al. 2004. Acute effect of oral vitamin C on coronary circulation in young healthy smokers. Am. Heart J. 148:300–305

    Article  PubMed  CAS  Google Scholar 

  • Wang Q.D., Pernow J., Sjoquist P.O., Ryden L. 2002. Pharmacological possibilities for protection against myocardial reperfusion injury. J. Cardiovasc. Res. 55:25–37

    Article  CAS  Google Scholar 

  • Wang X.P., Ma J.H. 2004. Nitric oxide increases persistent sodium current of ventricular myocytes in guinea pig during normoxia and hypoxia. Acta Physiol. Sin. 56:603–608

    Google Scholar 

  • Whalley D.W., Wendt D.J., Starmer C.F., et al. 1994. Voltage-independent effects of extracellular K+ on the Na+ current and phase 0 of the action potential in isolated cardiac myocytes. J. Circ Res. 75:491–502

    CAS  Google Scholar 

  • Zabel M., Lichtlen P.R. 1998. Comparison of ECG variables of dispersion of ventricular repolarization with direct myocardial repolarization measurements in the human heart. J. Cardiovasc. Electrophysiol. 9:1279–1284

    PubMed  CAS  Google Scholar 

  • Zygmunt A.C., Eddlestone G.T., Thomas G.P., et al. 2001. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am. J. Physiol. 281:H689–H697

    CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the Science Foundation of the Health Bureau of Hubei Province (JX2B72) and the Key Scientific Research Program of the Educational Bureau of Hubei Province (Z200511002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hua Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Ma, JH., Zhang, PH. et al. Vitamin C Pretreatment Attenuates Hypoxia-Induced Disturbance of Sodium Currents in Guinea Pig Ventricular Myocytes. J Membrane Biol 211, 81–87 (2006). https://doi.org/10.1007/s00232-005-7014-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-7014-8

Keywords

Navigation