Skip to main content
Log in

Changes in FAD and NADH Fluorescence in Neurosecretory Terminals Are Triggered by Calcium Entry and by ADP Production

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We measured changes in the intrinsic fluorescence (IF) of the neurosecretory terminals of the mouse neurohypophysis during brief (1–2 s) trains of stimuli. With fluorescence excitation at either 350 ± 20 or 450 ± 50 nm, and with emission measured, respectively, at 450 ± 50 or ≥ 520 nm, ΔF/F o was ∼5–8 % for a 2 s train of 30 action potentials. The IF changes lagged the onset of stimulation by ∼100 ms and were eliminated by 1 μM tetrodotoxin (TTX). The signals were partially inhibited by 500 μM Cd2+, by substitution of Mg2+ for Ca2+, by Ca2+-free Ringer’s with 0.5 mM EGTA, and by 50 μM ouabain. The IF signals were also sensitive to the mitochondrial metabolic inhibitors CCCP (0.3 μM), FCCP (0.3 μM), and NaN3 (0.3 mM), and their amplitude reflected the partial pressure of oxygen (pO2) in the bath. Resting fluorescence at both 350 nm and 450 nm exhibited significant bleaching. Flavin adenine dinucleotide (FAD) is fluorescent, while its reduced form FADH2 is relatively non-fluorescent; conversely, NADH is fluorescent, while its oxidized form NAD is non-fluorescent. Thus, our experiments suggest that the stimulus-coupled rise in [Ca2+]i triggers an increase in FAD and NAD as FADH2 and NADH are oxidized, but that elevation of [Ca2+]i, alone cannot account for the totality of changes in intrinsic fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. 1Here and elsewhere, we refer to reduced pyridine nucleotide exclusively as NADH, since its identity was established definitively by analytical biochemical measurements of the rapid response of NADH and the lack of response of NADPH to mitochondrial redox state (Chance, B., Schoener, B., Krejci, K., Russmann, H., Wesemann, W., Schnitger, H., Bucher, T. 1965. Kinetics of Fluorescence and Metabolite Changes in Rat Liver During a Cycle of Ischemia. Biochem Zeit 341:325–333).

References

  • Aubert X., Chance B., Keynes R.D. 1964. Optical studies of biochemical events in the electric organ of Electrophorus. Proc. Roy. Soc. B 160:211–245

    Article  CAS  Google Scholar 

  • Austin, G., Jutzy, R., Chance, B., Barlow, C. 1978. Noninvasive Monitoring of Human Brain Oxidative Metabolism. In: P.L. Dutton, J. Leigh. J.S., A. Scarpa, editors, Frontiers of Biological Energetics. Academic Press, Inc., New York City. pp. 1445–1455

  • Baker P.F., Knight D.E. 1981. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos. Trans. R. Soc. Lond. B 296:83–103

    CAS  Google Scholar 

  • Banerjee A., Barry V.A., DasGupta B.R., Martin T.F. 1996. N-Ethylmaleimide-sensitive factor acts at a profusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271:20223–20226

    Article  CAS  PubMed  Google Scholar 

  • Benson R.C., Meyer R.A., Zaruba M.E., McKhann G.M. 1979. Cellular autofluorescence is it due to flavins? J. Histochem. Cytochem. 27:44–48

    CAS  Google Scholar 

  • Chance B. 1965. The energy-linked reaction of calcium with mitochondria. J. Biol. Chem. 240:2729–2748

    CAS  PubMed  Google Scholar 

  • Chance, B. 1966. Spectrophotometric and kinetic studies of flavoproteins in tissues, cell suspensions, mitochondria and their fragments. In: E. Slater, editor, Flavins and Flavoproteins. Elsevier Publishing Company, Amsterdam, pp. 496–510

    Google Scholar 

  • Chance B. 1991. Optical Method. Annu. Rev. Biophys. Biophys. Chem. 20:1–28

    Article  CAS  PubMed  Google Scholar 

  • Chance B., Baltscheffsky H. 1958. Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide. J. Biol. Chem. 233:736–739

    CAS  PubMed  Google Scholar 

  • Chance, B., Erecinska, M. 1972. Kinetic and redox properties of flavoproteins in mitochondria. In: H. Hemker, B. Hess, editors, Structure and Function of Oxidation-Reduction Enzymes. Pergamon Press, New York. pp. 495–499

    Google Scholar 

  • Chance, B., Mela, L., Wong, D. 1968. Flavins and Flavoproteins. In: Y. Kunio, editor. 2nd Conference on Flavins and Flavoproteins. Univ. of Tokyo Press, Tokyo

  • Chance B., Schoener B., Krejci K., Russmann H., Wesemann W., Schnitger H., Bucher T. 1965. Kinetics of fluorescence and metabolite changes in rat liver during a cycle of Ischemia. Biochem. Zeit. 341:325–333

    CAS  Google Scholar 

  • Chance B., Williams G.R. 1955a. A method for the localization of sites for oxidative phosphorylation. Nature 176:250–254

    CAS  Google Scholar 

  • Chance B., Williams G.R. 1955b. Respiratory enzymes in oxidative phosphorylation. Difference spectra. J Biol Chem. 217:395–407

    CAS  Google Scholar 

  • Chance B., Williams G.R. 1955c. A simple and rapid assay of oxidative phosphorylation. Nature 175:1120–1121

    CAS  Google Scholar 

  • Chance B., Williams G.R. 1956. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J. Biol. Chem. 221:477–489

    CAS  PubMed  Google Scholar 

  • Douglas W.W., Poisner A.M. 1964. Stimulus-secretiony coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. A 172:1–18

    CAS  PubMed  Google Scholar 

  • Duchen M.R. 1992. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem. J. 283:41–50

    CAS  PubMed  Google Scholar 

  • Duchen M.R. 1999. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol 516:1–17

    Article  CAS  PubMed  Google Scholar 

  • Duchen M.R., Biscoe T.J. 1992. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J. Physol. 450:33–61

    CAS  PubMed  Google Scholar 

  • Duchen M.R., Smith P.A., Ashcroft P.M. 1993. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem. 294:35–42

    CAS  PubMed  Google Scholar 

  • Fox P.T., Raichle M.E., Mintun M.A., Dence C. 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    CAS  PubMed  Google Scholar 

  • Gainer H., Wolfe S.A., Jr., Obaid A.L., Salzberg B.M. 1986. Action potentials and frequency-dependent secretion in the mouse neurohypophysis. Neuroendocrinology 43:557–563

    CAS  PubMed  Google Scholar 

  • Gunter T.E., Buntinas L., Sparagna G.C., Gunter K.K. 1998. The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochem. Biophy. Acta 1366:5–15

    Article  CAS  PubMed  Google Scholar 

  • Hosaka M., Sudhof T.C. 1998. Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J. Biol. Chem. 273:1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Kasischke K.A., Vishwasrao H.D., Fisher P.J., Zipfel W.R., Webb W.W. 2004. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  CAS  PubMed  Google Scholar 

  • Katz B., Miledi R. 1969. Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J. Physiol. 203:689–706

    CAS  PubMed  Google Scholar 

  • Kim, G., Kosterin, P., Obaid, A., Salzberg, B. 2006. Spike-triggered changes in NAD(P)H and FAD fluorescence in neurosecretory terminals depend mainly upon calcium entry. Biophys. Soc. Abstracts 1105–pos.

  • Kosterin, P., Obaid, A., Muschol, M, Salzberg, B. 2005. A “Large” Change in the Intrinsic Fluorescence (IF) of Mammalian Nerve Terminals that Accompanies Release of Peptides. Biophys. Soc. Abstracts 1493–pos.

  • Landolfi B., Curci S., Debellis L., Pozzan T., Hofer A.M. 1998. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured In situ in intact cells. Cell Biol. 142:1235–43

    Article  CAS  Google Scholar 

  • Lee A.K., Tse A. 2005. Dominant role of mitochondria in calcium homeostasis of single rat pituitary corticotropes. Endocrinology 146:4985–4993

    Article  CAS  PubMed  Google Scholar 

  • Magistretti P.J., Pellerin L., Rothman D.L., Shulman R.G. 1999. Energy on demand. Science 272:551–554

    Article  CAS  PubMed  Google Scholar 

  • Malonek D., Grinvald A.. 1996. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    CAS  PubMed  Google Scholar 

  • Morita K., Ishii S., Uda H., Oka M. 1988. Requirement of ATP for exocytotic release of catecholarnines from digitonin-permeabilized adrenal chromaffin cells. J. Neurochem. 50:644–648

    CAS  PubMed  Google Scholar 

  • Muschol M., Kosterin P., Ichikawa M., Salzberg B.M. 2003. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of “stuttering ; conduction”. J. Newrosci. 23:11352–11362

    CAS  PubMed  Google Scholar 

  • Muschol M., Salzberg B.M. 2000. Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion. J. Neurosci 20:6773–6780

    CAS  PubMed  Google Scholar 

  • Nicholls D., Ferguson D. 2002. Bioenergetics 3. Academic Press, San Diego, CA

    Google Scholar 

  • Nordmann J.J. 1977. Ultrastructural morphometry of the rat neurohypophysis. J. Anat. 423:213–218

    CAS  PubMed  Google Scholar 

  • Obaid A.L., Flores R., Salzberg B.M. 1989. Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes. Gen. Physiol. 93:715–729

    Article  CAS  PubMed  Google Scholar 

  • Obaid, A.L., Koyano, T., Connor, J.A., Salzberg, B.M. 1995. Optical measurements of electrical activity and [Ca2+] with single cell resolution during a simulated immune response in an enteric nervous system. In: Fourth IBRO World Congress of Neuroscience, Kyoto, Japan

  • Obaid A.L., Loew L.M., Wuskell J.P., Salzberg B.M. 2004. Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis. J. Neurosci. Meth. 134:179–190

    Article  CAS  Google Scholar 

  • Parsons T.D., Obaid A.L., Salzberg B.M. 1992. Aminoglycoside antibiotics block voltage-dependent calcium channels in intact vertebrate nerve terminals. J. Gen. Physiol. 99:491–504

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L., Magistretti PJ. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91:10625–10629

    CAS  PubMed  Google Scholar 

  • Pitter J.G., Maechler P., Wollheim C.B., Spat A. 2002. Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium 31:97–104

    Article  CAS  PubMed  Google Scholar 

  • Pralong W.F., Hunyady L., Varnai P., Wollheim C.B., Spat A. 1992. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc. Natl. Acad. Sci. USA 89:132–136

    CAS  PubMed  Google Scholar 

  • Reinert K.C., Dunbar R.L., Gao W., Chen G., Ebner T.J. 2004. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J. Neurophysiol. 92:199–211

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R., Bernard! P., Pozzan T. 2000. Mitochondria as all-round players of the calcium game. J. Physiol. 529:37–47

    Article  CAS  PubMed  Google Scholar 

  • Rumyantsev S.L., Shur M.S., Kosterin P.V., Bilenko Y., Salzberg B.M. 2004. Low frequency noise and long-term stability of non-coherent light sources. J. Appl. Phys. 96:966–969

    Article  CAS  Google Scholar 

  • Salzberg B.M., Kosterin P.V., Muschol M., Obaid A.L., Rumyantsev S.L., Bilenko Y., Shur M.S. 2005. An ultra-stable non-coherent light source for optical measurements in neuroscience and cell physiology. J. Neurosci. Meth. 141:165–169

    Article  CAS  Google Scholar 

  • Salzberg B.M., Obaid A.L., Gainer H. 1985. Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis. J. Gen. Physiol. 86:395–411

    Article  CAS  PubMed  Google Scholar 

  • Salzberg B.M., Obaid A.L., Senseman D.M., Gainer H. 1983. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306:36–40

    Article  CAS  PubMed  Google Scholar 

  • Shibuki K., Hishida R., Murakami H., Kudoh M., Kawaguchi T., Watanabe M., Watanabe S., Kouuchi T., Tanaka R. 2003. Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence. J. Physiol. 549:919–927

    Article  CAS  PubMed  Google Scholar 

  • Shuttleworth C.W., Brennan A.M., Connor J.A. 2003. NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J. Neurosci. 23:3196–208

    CAS  PubMed  Google Scholar 

  • Voronina S., Sukhomlin T., Johnson P.R., Erdemli G., Petersen O.H., Tepikin A. 2002. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J. Physiol. 539:41–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowlegements

We are grateful to Britton Chance for reading the manuscript and for his encouragement. Supported by USPHS grant NS 40966 (BMS) and NS 02176 (MM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.M. Salzberg.

Additional information

P. Kosterin and G.H. Kim contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosterin, P., Kim, G., Muschol, M. et al. Changes in FAD and NADH Fluorescence in Neurosecretory Terminals Are Triggered by Calcium Entry and by ADP Production. J Membrane Biol 208, 113–124 (2005). https://doi.org/10.1007/s00232-005-0824-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0824-x

Keywords

Navigation