Skip to main content
Log in

Putative ClC-2 Chloride Channel Mediates Inward Rectification in Drosophila Retinal Photoreceptors

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams M.D., et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Bader C., Bertrand D. 1984. Calcium-activated chloride current in cultured sensory and parasympathetic quail neurons. J. Physiol. 347:611–631

    CAS  PubMed  Google Scholar 

  • Bairoch A., Bucher. P., Hofmann K. 1997. The PROSITE database, its status in 1997. Nucl. Acids Res. 25:217–221

    CAS  PubMed  Google Scholar 

  • Beaumont V., Zucker R.S. 2000. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih, channels. Nature Neurosci 3:133–141

    Article  CAS  PubMed  Google Scholar 

  • Bösl M.R., Stein V., Hübner C., Zdebik A.A., Jordt S., Mukhopadhyay. A.K., Davidoff M.S., Holstein A., Jentsch T.J. 2001. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J. 20:1289–1299

    Article  PubMed  Google Scholar 

  • Chyb S., Raghu P., Hardie R.C. 1999. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259

    CAS  PubMed  Google Scholar 

  • Chyb S., Hevers W., Forte M., Wolfgang W.J., Selinger Z., Hardie R.C. 1999. Modulation of the light response by cAMP in Drosophila photoreceptors. J. Neurosci. 15: 8799–8807

    Google Scholar 

  • Cid L.P., Niemeyer M., Ramírez A., Sepulveda F.V. 2000. Splice variants of a ClC-2 chloride channel with differing functional characteristics. Am. J. Physiol. 279:C1198–C1210

    CAS  Google Scholar 

  • Clark S., Jordt S.-E., Jentsch T.J., Mathie A. 1998. Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. J. Physiol. 506:665–678

    Article  CAS  PubMed  Google Scholar 

  • Cuppoletti J., Tewari K.P., Sherry A.M., Kupert E.Y., Malinowska D.H. 2001. ClC-2 Cl channels in human lung epithelia: activation by arachidonic acid, amidation, and acid-activated omeprazole. Am. J. Physiol. 281:C46–C54

    CAS  Google Scholar 

  • Cuppoletti J., Malinowska D.H., Tewari K.P., Li Q.-J., Sherry A.M., Patchen M.L., Ueno R. 2004a. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am. J. Physiol. 287:C1173–C1183

    Article  CAS  Google Scholar 

  • Cuppoletti J., Tewari K.P., Sherry A.M., Ferrante C.J., Malinowska D.H. 2004b. Sites of protein kinase A activation of the human ClC-2 Cl channel. J. Biol. Chem. 279:21849–21856

    Article  CAS  Google Scholar 

  • Enz R., Ross B.J., Cutting G.R. 1999. Expression of voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J. Neurosci. 19:9841–9847

    CAS  PubMed  Google Scholar 

  • Estévez R., Pusch M., Ferrer-Costa C., Orozco M., Jentsch T.J. 2004. Functional and structural conservation of CBS domains from ClC chloride channels. J. Physiol. 557:363–378

    PubMed  Google Scholar 

  • Falhke C. 2001. Ion permeation and selectivity in ClC-type chloride channels. Am. J. Physiol. 280:F748–F757

    CAS  Google Scholar 

  • Fletcher G.H., Chiappinelli V.A. 1992. An inward rectifier is present in presynaptic nerve terminals in the chick ciliary ganglion. Brain Res. 575: 103–112

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T., Ogura T., Katayama Y., Hiraoka M. 1998. Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am. J. Physiol. 274:C500–C512

    CAS  PubMed  Google Scholar 

  • Gelband G.H., Greco P.O., Martens J.R. 1996. Voltage-dependent chloride: channels: invertebrates to man. J. Exp. Zool. 275:277–282

    Article  CAS  PubMed  Google Scholar 

  • Gründer S., Thiemann A., Pusch M., Jentsch T.J. 1992. Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume. Nature 360:759–762

    Article  PubMed  Google Scholar 

  • Han Y., Jacoby R.A., Wu S.M. 2000. Morphological and electrophysiological properties of dissociated primate retinal cells. Brain Res. 875:175–186

    Article  CAS  PubMed  Google Scholar 

  • Hanke W, Miller C. 1983. Single chloride channels from Torpedo electroplax: Activation by protons. J. Gen. Physiol. 82:25–45

    Article  CAS  PubMed  Google Scholar 

  • Hardie R.C. 1991a. Whole-cell recordings of the light-induced current in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc. R. Soc. London 245:203–210

    Google Scholar 

  • Hardie R.C. 1991b. Voltage-sensitive potassium channels in Drosophila photoreceptors. J. Neurosci. 11:3079–3095

    CAS  Google Scholar 

  • Hardie R.C. 2003. Regulation of TRP channels via lipid second messengers. Ann. Rev. Physiol. 65:735–759

    CAS  Google Scholar 

  • Haug K., Warnstedt M, Alekov A.K., Sander T., Ramirez A. et al. 2003. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nature Genetics 33:527–532

    Article  CAS  PubMed  Google Scholar 

  • Henry P., Pearson W.L., Nichols C.G. 1996. Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+channels expressed in Xenopus oocytes. J. Physiol. 495:681–688

    CAS  PubMed  Google Scholar 

  • Hestrin S. 1987. The properties and function of inward rectification in rod photoreceptors of the tiger salamander. J. Physiol. 390:319–333

    CAS  PubMed  Google Scholar 

  • Hille, B. 2001. Ionic channels of excitable membranes. Sunderland, MA: Sinauer

  • Jentsch T.J., Stein V., Weinreich F., Zdebik A.A. 2002. Molecular structure of physiological function of chloride channels. Physiol. Rev. 82:503–568

    CAS  PubMed  Google Scholar 

  • Jordt S.-E., Jentsch T.J. 1997. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 16:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Kaneko A., Tachibana M. 1985. Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of Carassius auratus retina. J. Physiol. 358:169–182

    CAS  PubMed  Google Scholar 

  • Kawai F., Horiguchi M., Suzuki H., Miyachi E.-I. 2002. Modulation by hyperpolarization-activated cationic currents of voltage responses in human rods. Brain Res. 943:48–55

    Article  CAS  PubMed  Google Scholar 

  • Leonoudakis D., Mailliard W., Wingerd K., Clegg D., Vandenberg C. 2001. Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J. Cell. Sci. 114:987–998

    CAS  PubMed  Google Scholar 

  • Lorenz C., Pusch M., Jentsch T.J. 1996. Heteromultimeric ClC chloride channels with novel properties. Proc. Nat. Acad. Sci. USA 93:13362–13366

    CAS  PubMed  Google Scholar 

  • Maricq A.V., Korenbrot J.I. 1990. Potassium currents in the inner segment of single retinal cone photoreceptors. Potassium currents in the inner segment of single retinal cone photoreceptors. J. Neurophysiol 64:1917–1928

    CAS  PubMed  Google Scholar 

  • Middleton R.E., Pheasant D.J., Miller C. 1996. Homomeric architecture of a ClC-type chloride ion channel. Nature 383:337–340

    Article  CAS  PubMed  Google Scholar 

  • Mladinic M., Becchetti A., Didelon F., Bradbury A., Cherubini E. 1999. Low expression of the ClC-2 chloride channel during postnatal development: a mechanism for the paradoxical depolarizing action of GABA and glycine in the hippocampus. Proc. R. Soc. Lond. 266:1207–1213

    CAS  Google Scholar 

  • Nehrke K., Arreola J., Nguyen H.-V., Pilato J., Richardson L., Okunade G., Baggs R., Shull G.E., Melvin J.E. 2002. Loss of hyperpolarization-activated Cl current in salivary acinar cells from Clcn2 knockout mice. J. Biol. Chem. 277:23604–23611

    CAS  PubMed  Google Scholar 

  • Niemeyer B.A., Suzuki E., Scott K., Jalink K., Zuker C.S. 1996. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85:651–659

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer M.I., Cid L.P., Zuniga L., Catalan M., Sepulveda F.V. 2003. A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J. Physiol. 553:873–879

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer M.I., Yusef Y.R., Cornejo I, Flores C.A., Sepulveda F.V., Cid L.P. 2004. Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol. Genomics 19:74–83

    CAS  PubMed  Google Scholar 

  • Nobile M., Pusch M., Rapisarda C., Ferroni S. 2000. Single-channel analysis of a ClC-2-like chloride conductance in cultured rat cortical astrocytes. FEES Lett. 479:10–14

    Article  CAS  Google Scholar 

  • Ordway R.W., Singer J.J., Walsh V. 1991. Direct regulation of ion channels by fatty acids. Trends Neurosci. 3:96–100

    Google Scholar 

  • Phillips C.L., Bacigalupo J., O’Day P.M. 1992. Inward rectification in Limulus ventral photoreceptors. Vis. Neurosci. 8:19–25

    CAS  PubMed  Google Scholar 

  • Ponce A., Bueno E., Kentros C., Vega-Saenz de Miera E., Chow A., Hillman D., Chen S., Zhu L., Wu M.B. Wu X., Rudy B., Thornhil W.B. 1996 G-protein-gated inward rectifier K+ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. J. Neurosci. 16:1990–2001

    CAS  PubMed  Google Scholar 

  • Pusch M., Jordt S.E., Stein V., Jentsch T.J. 1999. Chloride dependence of hyperpolarization-activated chloride channel gates. J. Physiol. 515:341–353

    Article  CAS  PubMed  Google Scholar 

  • Raghu P., Usher K., Jonas S., Chyb S., Polyanovsky A., Hardie R.C. 2000. Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylgycerol kinase mutant, rdgA. Neuron 26:169–179

    Article  CAS  PubMed  Google Scholar 

  • Rutledge E., Bianchi L., Christensen M., Boehmer C., Morrison R., Broslat A., Beld A.M., George A.L., Greenstein D., Strange K. 2001. CLH-3, a ClC-2 anion channel ortholog activated during meiotic maturation in C. elegans oocytes. Curr. Biol. 11:161–170

    Article  CAS  PubMed  Google Scholar 

  • Schwiebert E.M., Cid-Soto L.P., Stafford D., Carter M., Blaisdell C.J., Zeitlin P.L., Guggino W.B., Cutting G.R. 1998. Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc. Natl. Acad. Sci. USA 95:3879–3884

    CAS  PubMed  Google Scholar 

  • Sherry A.M., Stroffekova K., Knapp L.M., Kupert E.Y., Cuppoletti J., Malinowska D.H. 1997. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl channel. Am. J. Physio. 273:C384–C393

    CAS  Google Scholar 

  • Shin K.S., Park J.Y., Kwon H., Chung C.H., Kang M.S. 1997. Opposite effect of intracellular Ca2+ and protein kinase C on the expression of inwardly rectifying K+ channel 1 in mouse skeletal muscle. J. Biol. Chem. 272:21227–21232

    CAS  PubMed  Google Scholar 

  • Staley K. 1994. The role of an inwardly rectifying chloride channel conductance in postsynaptic inhibition. J. Neurophysiol. 72:273–284

    CAS  PubMed  Google Scholar 

  • Staley K., Smith R., Schaack J., Wilcox C., Jentsch T.J. 1996. Alteration of GABA receptor function following gene transfer of the ClC-2 chloride channel. Neuron 17:543–551

    Article  CAS  PubMed  Google Scholar 

  • Stark W.S., Lin T., Brackhahn D., Christianson J.S., Sun G. 1993. Fatty acids in the lipids of Drosophila heads: effects of visual mutants, carotenoid deprivation and dietary fatty acids. Lipids 28:345–350

    CAS  PubMed  Google Scholar 

  • Tachibana M. 1983. Solitary horizontal cells in culture—I. Their electrical properties. Vision Res. 23:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Tewari K.P., Malinowska D.H., Sherry A.M., Cuppoletti J. 2000. PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Am. J. Physiol. 279:C40–C50

    CAS  Google Scholar 

  • Thiemann A., Gründer S., Pusch M., Jentsch T.J. 1992. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60

    Article  CAS  PubMed  Google Scholar 

  • Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Varela D., Niemeyer M.I., Cid L.P., Sepulveda F.V. 2002. Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel. J. Physiol. 544:363–372

    Article  CAS  PubMed  Google Scholar 

  • Wang T., Xu H., Oberwinkler J., Gu Y., Hardie R.C., Montell C. 2005. Light activation, adaptation, and cell survival functions of the Na+/Ca+ exchanger CalX. Neuron 45:367–378

    CAS  PubMed  Google Scholar 

  • Weinreich F., Jentsch T.J. 2001. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J. Biol. Chem. 276:2347–2353

    Article  CAS  PubMed  Google Scholar 

  • Wischmeyer E, Karschin A. 1996. Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K+ channels by direct protein kinase A-mediated phosphorylation. Proc. Natl. Acad. Sci. USA 93:5819–5823

    Article  CAS  PubMed  Google Scholar 

  • Yagi T., Macleish P.R. 1994. Ionic conductances of monkey solitary cone inner segments. J. Neurophysiol. 71:656–665

    CAS  PubMed  Google Scholar 

  • Zuñiga L., Niemeyer M.I., Varela D., Catalan M., Cid L.P., Sepulveda F.V. 2004. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J. Physiol. 555:671–682

    PubMed  Google Scholar 

Download references

Acknowledgement

Supported by grant FONDECYT 1040772 (RD), MIDEPLAN ICM P99-031-F (JB), CONICYT Doctoral Thesis grant 2970006 (GU), NIH Grant EY09388 (P.M.O.), a grant from the American Heart Association Oregon Affiliate (P.M.O). G.U. was supported by a CONICYT doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bacigalupo.

Additional information

G. Ugarte and R. Delgado contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugarte, G., Delgado, R., O’Day, P. et al. Putative ClC-2 Chloride Channel Mediates Inward Rectification in Drosophila Retinal Photoreceptors. J Membrane Biol 207, 151–160 (2005). https://doi.org/10.1007/s00232-005-0810-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0810-3

Keywords

Navigation