Skip to main content

Advertisement

Log in

Clinical Relevance of Ion Channels for Diagnosis and Therapy of Cancer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Ion channels have a critical role in cell proliferation and it is well documented that channel blockers can inhibit the growth of cancer cells. The concept of ion channels as therapeutic targets or prognostic biomarkers attracts increasing interest, but the lack of potent and selective channel modulators has hampered a critical verification for many years. Today, the knowledge of human ion channel genes is almost complete and molecular correlates for many native currents have already been identified. This information triggered a wave of experimental results, identifying individual ion channels with relevance for specific cancer types. The current pattern of cancer-related ion channels is not arbitrary, but can be reduced to few members from each ion channel family. This review aims to provide an overview of the molecularly identified ion channels that might be relevant for the most common human cancer types. Possible applications of these candidates for a targeted cancer therapy or for clinical diagnosis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Abdel-Ghany M., Cheng H.C., Elble R.C., Pauli B.U. 2001. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J. Biol. Chem. 276:25438–25446

    Article  PubMed  CAS  Google Scholar 

  • Abdul M., Hoosein N. 2002a. Voltage-gated potassium ion channels in colon cancer. Oncol Rep 9:961–964

    CAS  Google Scholar 

  • Abdul M., Hoosein N. 2002b. Expression and activity of potassium ion channels in human prostate cancer. Cancer. Lett. 186:99–105

    Article  CAS  ISI  Google Scholar 

  • Abdul M., Santo A., Hoosein N. 2003. Activity of potassium channel-blockers in breast cancer. Anticancer Res. 23:3347–3351

    PubMed  CAS  ISI  Google Scholar 

  • Bertz, J. Hentschel, S., Hundsdörfer, G., Kaatsch, P., Katalinic, A., Lehnert, M., Schön, D., Stegmair, C., Ziegler, H. 2004. Krebs in Deutschland. 4th revised Ed. Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland. Saarbrücken

  • Braun S., Naume B. 2005. Circulating and disseminated tumor cells. J. Clin. Oncol. 23:1623–1626

    Article  PubMed  Google Scholar 

  • Bustin S.A., Li S.R., Dorudi S. 2001. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol. 20:331–338

    Article  PubMed  CAS  Google Scholar 

  • Catterall. 2000. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell. Dev. Biol. 16:521–555

    Article  PubMed  CAS  Google Scholar 

  • Chandy G.K., Wulff H., Beeton C., Pennington M., Gutman G.A., Cahalan M.D. 2004. K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci. 25:280–289

    CAS  PubMed  Google Scholar 

  • Chapman C.G., Meadows H.J., Godden R.J., Campbell D.A., Duckworth M., Kelsell R.E., Murdock P.R., Randall A.D., Rennie G.I., Gloger I.S. 2000. Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res. Mol. Brain Res. 82:74–83

    PubMed  CAS  Google Scholar 

  • Clapham D.E., Montell C., Schultz G., Julis D. 2003. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev. 55:591–596

    Article  PubMed  CAS  Google Scholar 

  • Debes J.D., Roberts R.O., Jacobson D.J., Girman C.J., Lieber M.M., Tindall D.J., Jacobson S.J. 2004. Inverse association between prostate cancer and the use of calcium channel blockers. Cancer Epidemiol. Biomarkers Prev. 13:255–259

    Article  PubMed  CAS  Google Scholar 

  • De Ponti F., Poluzzi E., Cavalli A., Recanatini M., Montanaro N. 2002. Safety of non-antiarrhythmogenic drugs that prolong the QT interval or induce Torsade de pointes: an overview. Drug Saf. 25:263–286

    PubMed  CAS  ISI  Google Scholar 

  • Diss J.K., Archer S.N., Hirano J., Fraser S.P., Damgoz M.B. 2001. Expression profiles of voltage-gated Na+ channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate. 48:165–178

    Article  PubMed  CAS  ISI  Google Scholar 

  • Doering C.J., Zamponi G.W. 2003. Molecular pharmacology of high voltage-activated calcium channels. J Bioenerg Biomembr 35:491–505

    Article  PubMed  CAS  Google Scholar 

  • Duncan L.M., Deeds J., Cronin F.E., Donovan M., Sober A.J., Kauffman M., McCarthy J.J. 2001. Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19:568–576

    PubMed  CAS  Google Scholar 

  • Duncan L.M., Deeds J., Hunter J., Shao J., Holmgren L.M., Woolf E.A., Tepper R.I., Shyan A.W. 1998. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58:1515–1520

    PubMed  CAS  ISI  Google Scholar 

  • Elble, R.C., Pauli, B.U. 2001. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J. Biol. Chem. 276:40510–40517

    Article  PubMed  CAS  Google Scholar 

  • Farias L.M., Ocana D.B., Diaz L., Larrea F., Avila-Chavez E., Cadena A., Hinojosa L.M., Lara G., Villanueva L.A., Vargas C., Hernandez-Gallegos E., Camacho-Arroyo I., Duenas-Gonzalez A., Perez-Gardenas E., Pardo L.A., Morales A., Taja-Chayeb L., Escamilla J., Sanchez-Pena C., Camacho J. 2004. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res. 64:6996–7001

    Article  PubMed  CAS  ISI  Google Scholar 

  • Fixemer T., Wissenbach U., Flockerzi V., Bonkhoff H. 2003. Expression of Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861

    Article  PubMed  CAS  ISI  Google Scholar 

  • Fraser S.P., Salvador V., Manning E.A., Mizal J., Altun S., Raza M., Berridge R.J., Djamgoz M.B. 2003. Contribution of voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J. Cell. Physiol. 195:479–487

    Article  PubMed  CAS  Google Scholar 

  • Gavrilova-Ruch O., Schönherr K., Gessner G., Schönherr R., Klapperstück T., Wohlrab W., Heinemann S.H. 2002. Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J. Membrane. Biol. 188:137–149

    Article  CAS  Google Scholar 

  • Gruber A.D., Pauli B.U. 1999. Tumorigenicity of human breast cancer is associated with loss of the Ca2+− activated chloride channel CLCA2. Cancer Res. 59:5488–5491

    PubMed  CAS  ISI  Google Scholar 

  • Gudermann T., Flockerzi V. 2005. TRP channels as new pharmacological targets. Naunyn-Schmiedeberg’s Arch. Pharmacol. 371:241–244

    Article  CAS  Google Scholar 

  • Henshall S.M., Afar D.E.H., Miller J., Horvarth L.G., Quinn D.I., Rasia. K.K., Gish K., Willhite D., Kench J.G., Gardiner-Garden M., Stricker P.D., Scher H.I., Grygiel J.J., Agus D.B., Mack D.H., Sutherland R.L. 2003. Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res. 63:4196–4203

    PubMed  CAS  ISI  Google Scholar 

  • Izquierdo M. 2004. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12:217–27

    ISI  Google Scholar 

  • Jäger, H., Dreker, T., Buck, A., Giehl, K., Gress, T., Grissmer, S. 2004. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol. Pharmacol. 65:630–638

    PubMed  Google Scholar 

  • Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R.C., Ghafoor, A., Feuer, E.J., Thun, M.J. 2005. Cancer statistics 2005. CA Cancer J. Clin. 55:10–30

    Article  PubMed  Google Scholar 

  • Kim C.J., Cho Y.G., Jeong S.W., Kim Y.S., Kim S.Y., Nam S.W., Lee S.H., Yoo N.J., Lee J.Y., Park W.S. 2004. Altered expression of KCNK9 in colorectal cancers. APMIS 112:588–594

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lanaido M.E., Lalani E.N., Fraser S.P., Grimes J.A., Bhangal G., Djamgoz M.B., Abel P.D. 1997. Expression and functional analysis of voltage-activated Na+ channels inhuman prostate cancer cell lines and their contribution to invasion in vitro. Am. J. Pathol. 150:1213–1221

    Google Scholar 

  • Lastraioli E., Guasti L., Crociani O., PolvaniS., Hofmann G., Witchel H., Bencini L., Calistri M., Messerini L., Scatizzi M., Moretti R., Wanke E., Olivotto M., Mugnai G., Arcangeli A. 2004. herg1 Gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res. 64:606–611

    Article  PubMed  CAS  ISI  Google Scholar 

  • Loberg R.D., Fridman Y., Pienta B.A., Keller E.T., McCauley L.K., Taichman R.S., Pienta K.J. 2004. Detection and isolation of circulating tumor cells in urologic cancers: A review. Neoplasia 6:302–309

    PubMed  ISI  Google Scholar 

  • Lynch T.J., Bell D.W., Sordella R., Gurubhagavatula S., Okimoto R.A., Brannigan B.W., Harris P.L., Haserlat S.M., Supko J.G., Haluska F.G., Louis D.N., Christiani D.C., Settleman J., Haber D.A. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  • Mariot P., Vanoverberghe K., Lalevee N., Rossier M.F., Prevarskaya N. 2002. Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 277:10824–10833

    Article  PubMed  CAS  Google Scholar 

  • Meyer R. & Heinemann S.H. 1998. Characterization of an eag-like potassium channel in human neuroblastoma cells. J. Physiol. 508:49–56

    PubMed  CAS  Google Scholar 

  • Meyer R., Schönherr R., Gavrilova-Ruch O., Wohlrab W., Heinemann S.H. 1999. Identification of ether à go-go and calcium-activated potassium channels in human melanoma cells. J Membrane. Biol. 171:107–115

    Article  CAS  Google Scholar 

  • Monen S.H., Schmidt P.H., Wondergem R. 1998. Membrane potassium channels and human bladder tumor cells: I. Electrical properties. J. Membrane. Biol. 161:247–256

    Article  CAS  Google Scholar 

  • Mu D., Chen L.Y., Zhang X.P., See L.H., Koch C.M., Yen C., Tond J.J., Spiegel L, Nguyen K.C.Q., Servoss A., Peng Y., Pei L., Marks J.R., Lowe S., Hoey T., Jan L.Y., McCombie W.R., Wigler M.H., Powers S. 2003. Genomic amplification and oncogenic properties of the KCNP9 potassium channel gene Cancer Cell 3:297–302

    Article  PubMed  CAS  ISI  Google Scholar 

  • Nilius B., Droogmans G. 2003. Amazing chloride channels: an overview. Acta Physiol. Scand. 177:119–147

    Article  PubMed  CAS  Google Scholar 

  • Nilius B., Wohlrab W. 1992. Potassium channels and regulation of proliferation of human melanoma cells. J. Physiol. 445:537–548

    PubMed  CAS  Google Scholar 

  • Olsen M.L., Schade S., Lyons S.A., Amaral M.D., Sontheimer H. 2003. Expression of voltage-gated chloride channels in human glioma. cells. J. Neurosci. 23:5572–5582

    PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H., Le Bourhis X., Roudbaraki M., Toillon R.A., Delcourt P., Prevarskaya N.H. 2001. Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether a go-go K+ channel. Receptors Channels. 7:345–356

    PubMed  CAS  ISI  Google Scholar 

  • Ouadid-Ahidouch H., Roudbaraki M., Ahidouch A., Delcourt P., Prevarskaya N. 2004a. Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochem. Biophys. Res. Comm. 316:244–251

    Article  CAS  Google Scholar 

  • Ouadid-Ahidouch H., Roudbaraki M., Delcourt P., Ahidouch A., Loury N., Prevarskaya N. 2004b. Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am. J. Physiol. 287:C125–C134

    Article  CAS  Google Scholar 

  • Paez J.G., Janne P.A., Lee J.C., Tracy S., Greulich H., Gabriel S., Herman P., Kaye F.J., Lindemann N., Boggon T.J., Naoki K., Sasaki H., Fujii Y., Eck M.J., Sellers W.R., Johnson B.E., Meyerson M. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pardo L.A., del Camino D., Sánchez A., Alves F., Brüggemann A., Beckh S., Stühmer W. 1999. Oncogenic potential of EAG K+ channels. EMBO J. 18:5540–5547

    Article  PubMed  CAS  ISI  Google Scholar 

  • Patel A.J., Lazdunski M. 2004. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pfluegers Arch. - Eur. J. Physiol. 448:261–273

    CAS  Google Scholar 

  • Patt, S., Preussat, K., Beetz, C., Kraft, R., Schrey, M., Kalff, R., Schönherr, K., Heinemann, S.H. 2004. Expression of ether a go-go potassium channels in human gliomas. Neurosci. Lett. 368:249–253

    Article  PubMed  CAS  Google Scholar 

  • Peng, J.B., Zhuang, L, Berger, U.V., Adam, R.M., Williams, B.J., Brown, E.M., Hediger, M.A., Freeman, M.R. 2001. CaT1 expression correlates with tumor grade in prostate cancer. Biochem. Biophys. Res. Commun. 282:729–734

    Article  PubMed  CAS  Google Scholar 

  • Rajan S., Wischmeyer E., Liu G.X., Preissig-Müller R., Daut J., Karschin A., Derst C. 2000. TASK-3, a novel tandem pore-domain acid-sensitive K+ channel: an intracellular histidine as pH sensor. J. Biol. Chem. 275:16650–16657

    PubMed  CAS  Google Scholar 

  • Rane, S.G. 2000. The growth regulatory fibroblast IK channel is the prominent electrophysiological feature of rat prostatic cancer cells. Biochem. Biophys. Res. Commun. 269:457–463

    Article  PubMed  CAS  Google Scholar 

  • Ransom C.B., O’Neal J.T., Sontheimer H. 2001. Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J. Neurosci. 21:7674–7683

    PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois B., Milandri J.B., Bostel S., Dubois J.M. 2000. Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pfluegers Arch. 440:881–888

    Article  CAS  Google Scholar 

  • Rybalchenko V., Prevarskaya N., Van Coppenolle F., Legrand G., Lemonnier L, Le Bourhis X., Skryma R. 2001. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol. Pharmacol. 59:1376–1387

    PubMed  CAS  Google Scholar 

  • Sanguinetti M.C., Jiang C., Curran M.E., Keating M.T. 1995. A mechanistic link between an inherited and an aquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  PubMed  CAS  ISI  Google Scholar 

  • Schoenherr K.M., Tajima N., Kaatz M., Heinemann S.H., Schoenherr R. 2005. Potassium channels in melanoma cells are functionally upregulated by chronic hypoxia. Proc. Amer. Assoc. Cancer Res. 46:[5234]

    Google Scholar 

  • Schwab A., Reinhardt J., Schneider S.W., Gassner B., Schuricht B. 1999. K (+) channel-dependent migration of fibroblasts and human melanoma cells. Cell. Physiol. Biochem. 9:126–132

    Article  PubMed  CAS  Google Scholar 

  • Shao, X.D., Wu, K.C., Hao, Z.M., Zhang, J., Fan, D.M. 2002. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells. Cancer Biol. Ther. 4:

  • Smith G.A.M., Tsui H.-W., Newell E.W., Jiang X., Zhu X.-P., Tsui F.W.L, Schlichter L.C. 2002. Functional up-regulation of HERG K+ channels in neoplastic hematopietic cells. J. Biol. Chem. 277:18528–18534

    PubMed  CAS  Google Scholar 

  • Stocker J.W., De Franceschi L., McNaughton-Smith G.A., Corrocher R., Beuzard Y., Brugnara C. 2003. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 101:2412–2418

    Article  PubMed  CAS  ISI  Google Scholar 

  • Takanami I., Inoue Y., Gika M. 2004. G-protein inwardly rectifying potassium channel I (GIRK I) gene expression correlates with tumor progression in non-small cell lung cancer. BMC Cancer 4:79

    Article  PubMed  CAS  Google Scholar 

  • Tong A.W., Zhang Y.-A., Nemunaitis J. 2005. Small interfering RNA for experimental cancer therapy. Curr. Op. Mol. Ther. 7:114–124

    CAS  Google Scholar 

  • Tsavaler L., Shapero M.H., Morkowski S, Laus R. 2001. Trp-p8, a novel prostate-specific gene, is upregulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61:3760–3769

    PubMed  CAS  ISI  Google Scholar 

  • Wang X.T., Nagaba Y., Cross H.S., Wrba F., Zhang L., Guggino S.E. 2000. The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am. J. Pathol. 157:1549–1562

    PubMed  CAS  Google Scholar 

  • Wickenden A.D. 2002. K+ channels as therapeutic drug targets. Pharmacology Therapeutics. 94:157–182

    PubMed  CAS  ISI  Google Scholar 

  • Wondergem R., Cregan M., Strickler L., Miller R., Suttles J. 1998. Membrane potassium channels and human bladder tumor cells: II. Growth properties. J. Membrane. Biol. 161:257–262

    Article  CAS  Google Scholar 

  • Wonderlin W.F., Strobl J.S. 1996. Potassium channels, proliferation and G1 progression. J. Membr. Biol. 154:91–107

    Article  CAS  Google Scholar 

  • Wulff H., Miller M.J., Hansel W., Grissmer S., Cahalan M.D., Chandy K.G. 2000. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCal: a potential immunosuppressant. Proc. Natl. Acad. Sci. USA. 97:8151–8156

    Article  PubMed  CAS  Google Scholar 

  • Xu X.Z., Moebius F., Gill D.L., Montell C. 2001. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl. Acad. Sci. USA 98:10692–10697

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by IZKF Jena (TMWFK B307-04004). I thank S.H. Heinemann for his constant support of my work, K. Schönherr for helpful discussions and A. Hansel and G. Albrecht for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schönherr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönherr, R. Clinical Relevance of Ion Channels for Diagnosis and Therapy of Cancer. J Membrane Biol 205, 175–184 (2005). https://doi.org/10.1007/s00232-005-0782-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0782-3

Keywords

Navigation