Skip to main content
Log in

Small-cell Lung Cancer (Human): Potentiation of Endocytic Membrane Activity by Voltage-gated Na+ Channel Expression in Vitro

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The possible functional role of voltage-gated Na+ channel (VGSC) expression in controlling endocytic membrane activity in human small-cell lung cancer (SCLC) cell lines (H69, H209, H510) was studied using uptake of horseradish peroxidase (HRP). The normal human airway epithelial (16HBE14o) cell line was used in a comparative approach. Uptake of HRP was vesicular, strongly temperature-sensitive and suppressed by cytoskeletal poisons (cytochalasin D and colchicine), consistent with endocytosis. Compared with the normal cells, HRP uptake into SCLC cells was kinetically more efficient, resulting in more than four-fold higher uptake under optimized conditions. Importantly, HRP uptake into SCLC cells was inhibited significantly by the specific VGSC blocker tetrodotoxin, as well as lidocaine and phenytoin. These effects were dose-dependent. None of these drugs had any effect on the uptake into the 16HBE14o cells. Uptake of HRP into SCLC cells was reduced by ∼66% in Na+-free medium and was partially (∼30%) dependent on extracellular Ca2+. The possibility that the endocytic activity in the H510 SCLC cells involved an endogenous cholinergic system was investigated by testing the effects of carbachol (a cholinergic receptor agonist) and eserine (an inhibitor of acetylcholinesterase). Both drugs inhibited HRP uptake, thereby suggesting that basal cholinergic activity occurred. It is concluded that VGSC upregulation could enhance metastatic cell behavior in SCLC by enhancing endocytic membrane activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdul M., Hoosein N. 2001. Inhibition by anticonvulsants of prostate-specific antigen and interleukin-6 secretion by human prostate cancer cells. Anticancer Res. 21:2045–2048

    PubMed  Google Scholar 

  • Alien D.H., Lepple-Wienhues A., Cahalan MD. 1997. Ion channel phenotype of melanoma cell lines. J. Membr. Biol. 155:27–34

    Article  PubMed  Google Scholar 

  • Anderson J.D., Hansen T.P., Lenkowski P.W., Walls A.M., Choudhury I.M., Schenck H.A., Friehling M., Holl G.M., Patel M.K., Sikes R.A., Brown M.L. 2003. Voltage-gated sodium channel blockers as cytostatic inhibitors of the androgen-independent prostate cancer cell line PC-3. Mol. Cancer Ther. 2:1149–1154

    PubMed  Google Scholar 

  • Backonja M.M. 2002. Use of anticonvulsants for treatment of neuropathic pain. Neurology 59:14–27

    Google Scholar 

  • Barber M.J., Starmer C.F., Grant A.O. 1991. Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circ. Res. 69:677–696

    PubMed  Google Scholar 

  • Bennett E.S., Smith B.A., Harper J.M. 2004. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pfluegers Arch. 447:908–914

    Article  Google Scholar 

  • Blandino J.K., Viglione M.P., Bradley W.A., Oie H.K., Kim Y.I. 1995. Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome. IgG. J. Membr. Biol. 143:153–163

    Google Scholar 

  • Chan K.H., Vernino S, Lennon V.A. 2001. ANNA-3 anti-neuronal nuclear antibody: marker of lung cancer-related autoimmunity. Ann. Neurol. 50:301–311

    Article  PubMed  Google Scholar 

  • Chen Z., Ong. B.H., Kambouris N.G., Marban E., Tomaselli G.F., Balser J.R. 2000. Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels J. Physiol. 1:37–49

    Article  Google Scholar 

  • Clare J.J., Tate S.N., Nobbs M., Romanes M.A. 2000. Voltage-gated sodium channels as therapeutic targets. Drug Discov. Today. 5:506–520

    Article  PubMed  Google Scholar 

  • Cole J.C., Villa B.R., Wilkinson R.S. 2000. Disruption of actin impedes transmitter release in snake motor terminals. J. Physiol. 525:579–586

    Article  PubMed  Google Scholar 

  • Cousin M.A. 2000. Synaptic vesicle endocytosis: calcium works overtime in the nerve terminal. Mol. Neurobiol. 22:115–128

    Article  PubMed  Google Scholar 

  • Cunningham J.M., Lennon V.A., Lambert E.H., Scheithauer B. 1985. Acetylcholine receptors in small cell carcinomas. J. Neurochem. 45:159–167

    PubMed  Google Scholar 

  • Diss J.K., Archer S.N., Hirano J., Fraser S.P., Djamgoz M.B. 2001. Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines. Prastate 48:165–178

    Article  Google Scholar 

  • Diss J.K., Fraser S.P., Djamgoz M.B. 2004. Voltage-gated Na(+) channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur. Biophys. J. 33:180–193

    Article  PubMed  Google Scholar 

  • Djamgoz M.B.A., Mycielska M.E., Madeja Z., Fraser S.P., Korohoda W. 2001. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 114:2697–2705

    PubMed  Google Scholar 

  • Floyd S., De Camilli P. 1998. Endocytosis proteins and cancer: a potential link? Trends Cell Biol 8:299–301

    Article  PubMed  Google Scholar 

  • Fraser S.P., Ding Y., Liu A., Foster C.S., Djamgoz M.B. 1999. Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res. 295:505–512

    Article  PubMed  Google Scholar 

  • Fraser S.P., Diss J.K.J., Mycielska M.E., Coombes R.C., Djamgoz M.B.A. 2002. Voltage-gated sodium channel expression in human breast cancer cells: Possible functional role in metastatis. Breast Cancer Research & Treatment 76(Suppl. 1):S142

    Google Scholar 

  • Fraser S.P., Salvador V., Manning E.A., Mizal J., Altun S., Raza M., Berridge R.J., Djamgoz M.B.A. 2003. Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade: I. Lateral motility. J. Cell Physiol. 195:479–487

    Article  PubMed  Google Scholar 

  • Freedman S.D., Katz M.H., Parker E.M., Gelrud A. 1999. Endocytosis at the apical plasma membrane of pancreatic acinar cells is regulated by tyrosine kinases. Am. J. Physiol. 276:306–311

    Google Scholar 

  • Fucile S., Napolitano M., Mattel E. 1997. Cholinergic stimulation of human microcytoma cell line H69. Biochem. Biophys. Res. Commun. 230:501–504

    Article  Google Scholar 

  • Goldin A.L. 2000. Resurgence of sodium channel research. Annu. Rev. Physiol. 63:871–894

    Article  Google Scholar 

  • Gordon S.R., Czerwinski-Mowers D., Marchand J., Shuffett R. 1998. Endocytosis by the corneal endothelium. I. Regulation of binding and transport of hemeproteins and peroxidase conjugated lectins across the tissue. Histochem. Cell Biol. 110:251–262

    Article  PubMed  Google Scholar 

  • Grimes J.A., Fraser S.P., Stephens G.J., Downing J.E.G., Laniado M.E., Foster C.S., Abel P.D., Djamgoz M.B.A. 1995. Differential expression of voltage-gated Na+ currents in two prostatic cancer cell lines: Contribution to invasiness in vitro. FEBS Letts. 369:290–294

    Article  Google Scholar 

  • Gruenberg L. 2001. The endocytic pathway: A mosaic of domains. Nature Rev. Molec. Cell Biol. 2:721–730

    Article  Google Scholar 

  • Hilfiker, S., Czernik, A.J., Greengard, P., Augustine, G.J. Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse. J. Physiol. 531:141–146

  • Ihde D.C. 1995. Small-cell lung cancer: State-of-the-art therapy 1994. Chest 107:243–248

    Google Scholar 

  • Kilic G., Angleson J.K., Cochilla A.J., Nussinovitch I., Betz W.J. 2001. Sustained stimulation of exocytosis triggers continues membrane retrieval in rat pituitary somatotrophs. J. Physiol. 532:771–783

    Article  PubMed  Google Scholar 

  • Kondratiev A., Tomaselli G.F. 2003. Altered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channels. Mol. Pharmacol. 64:741–752

    Article  PubMed  Google Scholar 

  • Krasowska M., Grzywna Z.J., Mycielska M.E., Djamgoz M.B. 2004. Patterning of endocytic vesicles and its control by voltage-gated Na+ channel activity in rat prostate cancer cells: fractal analyses. Eur. Biophys. J. 33:535–542

    Article  PubMed  Google Scholar 

  • Laniado M.E., Lalani E.N., Fraser S.P., Grimes J.A., Bhangal G., Djamgoz M.B.A., Abel P.D. 1997. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am. J. Pathol. 150:1213–1221

    PubMed  Google Scholar 

  • Maneckjee R., Minna J.D. 1990. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc. Natl. Acad. Sci. USA 87:3294–3298

    PubMed  Google Scholar 

  • McCleane G.J. 1999. Intravenous infusion of phenytoin relieves neuropathic pain: a randomized, double-blinded, placebo-controlled, crossover study. Anesth. Analg. 89:985–988

    Article  PubMed  Google Scholar 

  • Moody T.W., Chan D., Fahrenkrug J., Jensen R.T. 2003. Neuropeptides as autocrine growth factors in cancer cells. Curr. Pharm. Des. 9:495–509

    Article  PubMed  Google Scholar 

  • Mukherjee S., Ghosh R.N., Maxfield F.R. 1997. Endocytosis. Physiol. Rev. 77:759–803

    PubMed  Google Scholar 

  • Mycielska M.E., Djamgoz M.B.A. 2004. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117:1631–1639

    Article  PubMed  Google Scholar 

  • Mycielska M.E., Fraser S.P., Szatkowski M., Djamgoz M.B.A. 2003. Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J. Cell Physiol. 195:461–469

    Article  PubMed  Google Scholar 

  • Oda H., Naganuma T., Murayama T., Nomura Y. 1999. Inhibition of noradrenaline release from PC12 cells by the long-term treatment with cholera toxin. Neurochem. Int. 34:157–165

    Article  PubMed  Google Scholar 

  • Okamoto P.M., Gamby C., Wells D., Fallon J., Vallee R.B. 2001. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J. Biol. Chem. 276:48458–48465

    PubMed  Google Scholar 

  • O’Leary M.E., Chahine M. 2002. Cocaine binds to a common site on open and inactivated human heart (Na(v)1.5) sodium channels. J. Physiol. 541:701–716

    Article  PubMed  Google Scholar 

  • Onganer P.U., Seckl M.J., Djamgoz M.B.A. 2005. Neuronal characteristics of small-cell lung cancer. Review in progress

  • Oremek G.M., Sapoutzis N. 2003. Pro-gastrin-releasing peptide (ProGRP), a tumor marker for small cell lung cancer. AntiCancer Res. 23:895–898

    PubMed  Google Scholar 

  • Plummer N.W., Meisler M.H. 1999. Evolution and diversity of mammalian sodium channel genes. Genomics 57:323–331

    Article  PubMed  Google Scholar 

  • Roger S., Besson P., Le Guennec J.Y. 2003. Involvement of a novel fast inward sodium current in the invasion capacity of abreast cancer cell line. Biochim Biophys Acta. 1616:107–111

    PubMed  Google Scholar 

  • Quik M., Chan J., Patrick J. 1994. α-Bungarotoxin blocks the nicotinic receptor mediated increase in cell number in a neuroendocrine cell line. Brain Res. 655:161–167

    Article  PubMed  Google Scholar 

  • Ragsdale D.S., McPhee J.C., Scheuer T., Catterall W.A. 1994. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 5179:1724–1728

    Google Scholar 

  • Schacher S., Holtzman E., Hood D.C. 1976. Synaptic activity of frog retinal photoreceptors. A peroxidase uptake study. J. Cell Biol. 70:178–192

    Article  PubMed  Google Scholar 

  • Schuller H.M., Nylen E.S., Park P., Becker K.L. 1990. Nicotine, acetylcholine and bombesin are trophic growth factors in neuroendocrine cell lines derived from experimental hamster lung tumors. Life Sci. 47:571–578

    Article  PubMed  Google Scholar 

  • Smith P., Rhodes N.P., Fraser S.P., Djamgoz M.B., Ke Y., Foster C.S. 1998. Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Letts. 423:19–24

    Article  Google Scholar 

  • Smith R.M., Baibakov B., Ikebuchi Y., White B.H., Lambert N.A., Kaczmarek L.K., Vogel S.S. 2000. Exocytotic insertion of calcium channels constrains compensatory endocytosis to sites of exocytosis. J. Cell Biol. 148:755–767

    Article  PubMed  Google Scholar 

  • Song P., Sekhon H.S., Jia Y., Keller J.A., Blusztajn J.K., Mark G.P., Spindel E.R. 2003. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 63:214–221

    PubMed  Google Scholar 

  • Tarroni P., Rubboli R, Chini B., Zwart R., Oortgiesen M., Sher E., dementi F. 1992. Neuronal-type nicotinic receptors in human neuroblastoma and small-cell lung carcinoma cell lines. FEBS Lett. 312:66–70

    Article  PubMed  Google Scholar 

  • Theodosis D.T., Dreifuss J.J., Harris M.C., Orci L. 1976. Secretion-related uptake of horseradish peroxidase in neurohypophysial axons. J. Cell Biol. 70:294–303

    Article  PubMed  Google Scholar 

  • Tunnicliff G. 1996. Basis of the antiseizure action of phenytoin. Gen. Pharmacol. 27:1091–1097

    PubMed  Google Scholar 

  • Wang S.Y., Wang G.K. 2003. Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal. 15:151–159

    Article  PubMed  Google Scholar 

  • Waxman S.G., Cummms T.R., Dib-Hajj S.D., Black J.A. 2000. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review. J. Rehabil. Res. Dev. 37:517–528

    PubMed  Google Scholar 

  • Williams C.L., Lennon V.A. 1990. Activation of M3 muscarinic acetylcholine receptors inhibits voltage-dependent calcium influx in small cell lung carcinoma. J. Biol. Chem. 265:1443–1447

    PubMed  Google Scholar 

  • Willoughby D., Thomas R.C., Schwiening CJ. 2001. The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurones. J. Physiol. 530:405–416

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Pro Cancer Research Fund - PCRF. We thank Prof Michael J. Seckl for many useful discussions, Drs. Alexander Arcaro and Dieter Gruenert for supplying cell lines, and Prof. Mick Crawley and Mr. Rüstem Önkal for help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.B.A. Djamgoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onganer, P., Djamgoz, M. Small-cell Lung Cancer (Human): Potentiation of Endocytic Membrane Activity by Voltage-gated Na+ Channel Expression in Vitro. J Membrane Biol 204, 67–75 (2005). https://doi.org/10.1007/s00232-005-0747-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0747-6

Keywords

Navigation