Skip to main content

Advertisement

Log in

Understanding the biogenesis of polytopic integral membrane proteins

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andersson, H., von Heijne, G. 1994. Membrane protein topology: effects of delta mu H+ on the translocation of charged residues explain the ‘positive inside‘ rule. EMBO J. 13:2267–2272

    PubMed  CAS  Google Scholar 

  • Beckmann, R., Spahn, CM., Eswar, N., Helmers, J., Penczek, P.A., Sali, A., Frank, J., Blobel, G. 2001. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:361–372

    Article  PubMed  CAS  Google Scholar 

  • Bibi, E., Verner, G., Chang, C.Y., Kaback, H.R. 1991. Organization and stability of a polytopic membrane protein: deletion analysis of the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 88:7271–7275

    Article  PubMed  CAS  Google Scholar 

  • Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77:1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov, M., Heacock, P.N., Dowhan, W. 2002. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 21:2107–2116

    Article  PubMed  CAS  Google Scholar 

  • Borel, A.C., Simon, S.M. 1996. Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration. Cell 85:379–389

    Article  PubMed  CAS  Google Scholar 

  • Booth, P.J., Templer, R.H., Meijberg, W., Alien, S.J., Curran, A.R., Lorch, M. 2001. In vitro studies of membrane protein folding. Crit. Rev. Biochem. Mol. Biol. 36:501–603

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, S.K. 1999. Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Curr. Opin. Struct. Biol. 9:455–461

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Zhang, J.T. 1999. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Biochemistry 38: 5471–5477

    Article  PubMed  CAS  Google Scholar 

  • Chin, C.N., von Heijne, G., de Gier, J.W. 2002. Membrane proteins: shaping up. Trends Biochem. Sci. 27:231–234

    Article  PubMed  CAS  Google Scholar 

  • Denzer, A.J., Nabholz, C.E., Spiess, M. 1995. Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J. 14:6311–6317

    PubMed  CAS  Google Scholar 

  • Do, H., Falcone, D., Lin, J., Andrews, D.W., Johnson, A.E. 1996. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85:369–378

    Article  PubMed  CAS  Google Scholar 

  • Dohke, Y., Turner, R.J. 2002. Evidence that the transmembrane biogenesis of aquaporin 1 is cotranslational in intact mammalian cells. J. Biol. Chem. 277:15215–15219

    Article  PubMed  CAS  Google Scholar 

  • Dunlop, J., Jones, P.C., Finbow, M.E. 1995. Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO J. 14:3609–3616

    PubMed  CAS  Google Scholar 

  • Falcone, D., Do, H., Johnson, A.E., Andrews, D.W. 1999. Negatively charged residues in the IgM stop-transfer effector sequence regulate transmembrane polypeptide integration. J. Biol. Chem. 274:33661–33670

    Article  PubMed  CAS  Google Scholar 

  • Falk, M.M., Gilula, N.B. 1998. Connexin membrane protein biosynthesis is influenced by polypeptide positioning within the translocon and signal peptidase access. J. Biol. Chem. 273:7856–7864

    Article  PubMed  CAS  Google Scholar 

  • Fleming, K.G., Engelman, D.M. 2001. Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Proc. Natl. Acad. Sci. USA 98:14340–14344

    Article  PubMed  CAS  Google Scholar 

  • Gafvelin, G., Sakaguchi, M., Andersson, H., von Heijne, G. 1997. Topological rules for membrane protein assembly in eukaryotic cells. J. Biol. Chem. 272:6119–6127

    Article  PubMed  CAS  Google Scholar 

  • Gafvelin, G., von Heijne, G. 1994. Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77:401–412

    Article  PubMed  CAS  Google Scholar 

  • Goder, V., Bieri, C., Spiess, M. 1999. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell. Biol. 147:257–266

    Article  PubMed  CAS  Google Scholar 

  • Goder, V., Spiess, M. 2001. Topogenesis of membrane proteins: determinants and dynamics. FEES Lett. 504:87–93

    Article  CAS  Google Scholar 

  • Gorlich, D., Rapoport, T.A. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–630

    Article  PubMed  CAS  Google Scholar 

  • Gratkowski, H., Lear, J.D., DeGrado, W.F, 2001. Polar side chains drive the association of model transmembrane peptides. Proc. Natl. Acad. Sci. USA 98:880–885

    Article  PubMed  CAS  Google Scholar 

  • Guo, D., Liu, J., Motlagh, A., Jewell, J., Miller, K.W. 1996. Efficient insertion of odd-numbered transmembrane segments of the tetracycline resistance protein requires even-numbered segments. J. Biol. Chem. 271:30829–30834

    Article  PubMed  CAS  Google Scholar 

  • Haigh, N.G., Johnson, A.E. 2002. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J. Cell. Biol. 156:261–270

    Article  PubMed  CAS  Google Scholar 

  • Hamman, B.D., Hendershot, L.M., Johnson, A.E. 1998. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758

    Article  PubMed  CAS  Google Scholar 

  • Han, E.S., Zhang, J.T. 1998. Mechanism involved in generating the carboxyl-terminal half topology of P-glycoprotein. Biochemistry 37:11996–12004

    Article  PubMed  CAS  Google Scholar 

  • Hanein, D., Matlack, K.E., Jungnickel, B., Plath, K., Kalies, K.U., Miller, K.R., Rapoport, T.A., Akey, C.W. 1996. Oligomeric rings of the Sec6lp complex induced by ligands required for protein translocation. Cell 87:721–732

    Article  PubMed  CAS  Google Scholar 

  • Harley, CA., Holt, J.A., Turner, R., Tipper, D.J. 1998. Transmembrane protein insertion orientation in yeast depends on the charge difference across transmembrane segments, their total hydrophobicity, and its distribution. J. Biol. Chem. 273:24963–24971

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R.S., Lingappa, V.R. 1997. Membrane protein biogenesis: regulated complexity at the endoplasmic reticulum. Cell 91:575–582

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R.S, Lingappa, V.R. 1999. Regulation of protein biogenesis at the endoplasmic reticulum membrane. Trends Cell. Biol. 9:132–137

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R.S., Mastrianni, J.A., Scott, M.R., DeFea, K.A., Tremblay, P., Torchia, M., DeArmond, S.J., Prusiner, S.B., Lingappa, V.R. 1998a. A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R.S., Tremblay, P., Groth, D., DeArmond, S.J., Prusiner, S.B., Lingappa, V.R. 1999. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402:822–826

    Article  PubMed  CAS  Google Scholar 

  • Hegde, R.S., Voigt, S., Lingappa, V.R. 1998b. Regulation of protein topology by trans-acting factors at the endoplasmic reticulum. Mol. Cell 2:85–91

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, S.U., Mothes, W., Brunner, J., Rapoport, T.A. 2000. The Sec6lp complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233–244

    Article  PubMed  CAS  Google Scholar 

  • Hermansson, M., Monne, M., von Heijne, G. 2001. Formation of helical hairpins during membrane protein integration into endoplasmic reticulum membrane. Role of N and C terminal flanking regions. J. Mol. Biol. 313:1171–1179

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A.E., van Waes, M.A. 1999. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15: 799–842

    Article  PubMed  Google Scholar 

  • Liao, S., Lin, J., Do, H., Johnson, A.E. 1997. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90:31–41

    Article  PubMed  CAS  Google Scholar 

  • Lin, J., Addison, R. 1995. A novel integration signal that is composed of two transmembrane segments is required to integrate the Neurospora plasma membrane H+-ATPase into microsomes. J. Biol. Chem. 270:6935–6941

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Xiong, X., Helm, A., Kimani, K., Bragin, A., Skach, W.R. 1998. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J. Biol. Chem. 273:568–576

    Article  PubMed  CAS  Google Scholar 

  • Matlack, K.E.S., Mothes, W., Rapoport, T.A. 1998. Protein translocation: tunnel vision. Cell 92:381–390

    Article  PubMed  CAS  Google Scholar 

  • McGovern, K., Ehrmann, M., Beckwith, J. 1991. Decoding signals for membrane protein assembly using alkaline phosphatase fusions. EMBO J. 10:2773–2782

    PubMed  CAS  Google Scholar 

  • Menetret, J.F., Neuhof, A., Morgan, D.G., Plath, K., Radermacher, M., Rapoport, T.A., Akey, C.W. 2000. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Moller, S., Croning, M.D., Apweiler, R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  PubMed  CAS  Google Scholar 

  • Monne, M., Hermansson, M., von Heijne, G. 1999a. A turn propensity scale for transmembrane helices. J. Mol. Biol. 288:141–145

    Article  PubMed  CAS  Google Scholar 

  • Monne, M., Nilsson. I., Elofsson, A., von Heijne G. 1999b. Turns in transmembrane helices: determination of the minimal length of a “helical hairpin” and derivation of a fine-grained turn propensity scale. J. Mol. Biol. 293:807–814

    Article  PubMed  CAS  Google Scholar 

  • Mothes, W., Heinrich, S.U., Graf, R., Nilsson, I., von Heijne, G., Brunner, J., Rapoport, T.A. 1997. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89:523–533

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, I., Whitley, P., von Heijne G. 1994. The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J. Cell. Biol. 126:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, I., Witt, S., Kiefer, H., Mingarro, I., von Heijne, G. 2000. Distant downstream sequence determinants can control N-tail translocation during protein insertion into the endoplasmic reticulum membrane. J. Biol. Chem. 275:6207–6213

    Article  PubMed  CAS  Google Scholar 

  • Ota, K., Sakaguchi, M., Hamasaki, N., Mihara, K. 1998a. Assessment of topogenic functions of anticipated transmembrane segments of human band 3. J. Biol. Chem. 273:28286–28291

    Article  PubMed  CAS  Google Scholar 

  • Ota, K., Sakaguchi, H., Hamasaki, N., Mihara, K. 2000. Membrane integration of the second transmembrane segment of band 3 requires a closely apposed preceding signal-anchor sequence. J. Biol. Chem. 275:29743–29748

    Article  PubMed  CAS  Google Scholar 

  • Ota, K., Sakaguchi, M., von Heijne, G., Hamasaki, N., Mihara, K. 1998b. Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins. Mol. Cell 2:495–503

    Article  PubMed  CAS  Google Scholar 

  • Potter, M.D., Nicchitta, C.V. 2002. Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J. Biol. Chem. 277: 23314–23320

    Article  PubMed  CAS  Google Scholar 

  • Potter, M.D., Seiser, R.M., Nicchitta, C.V. 2001. Ribosome exchange revisited; a mechanism for translation-coupled ribosome detachment from the ER membrane. Trends Cell Biol. 11:112–115

    Article  PubMed  CAS  Google Scholar 

  • Rosch, K., Naeher, D., Laird, V., Goder, V., Spiess, M. 2000. The topogenic contribution of uncharged ammo acids on signal sequence orientation in the endoplasmic reticulum. J. Biol. Chem. 275:14916–14922

    Article  PubMed  CAS  Google Scholar 

  • Sanders, C.R., Nagy, J.K. 2000. Misfolding of membrane proteins in health and disease: the lady or the tiger? Curr. Opin. Struct. Biol. 10:438–442

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Sakaguchi, M., Goshima, S., Nakamura, T., Uozumi, N. 2002. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6. Proc. Natl. Acad. Sci. USA 99:60–65

    Article  PubMed  CAS  Google Scholar 

  • Senes, A., Ubarretxena-Belandia, I., Engelman, D.M. 2001. The Calpha—H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc. Natl. Acad. Sci. USA 98:9056–9061

    Article  PubMed  CAS  Google Scholar 

  • Sipos, L., von Heijne, G. 1993. Predicting the topology of eukaryotic membrane proteins. Eur. J. Biochem. 213:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Skach, W.R., Lingappa, V.R. 1993. Amino-terminal assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J. Biol. Chem. 268:23552–23561

    PubMed  CAS  Google Scholar 

  • Skach, W.R., Lingappa, V.R. 1994. Transmembrane orientation and topogenesis of the third and fourth membrane-spanning regions of human P-glycoprotein (MDR1). Cancer Res. 54: 3202–3209

    PubMed  CAS  Google Scholar 

  • Tsai, B., Ye, Y., Rapoport, T.A. 2002. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 3:246–255

    Article  PubMed  CAS  Google Scholar 

  • Ukaji, K., Ariyoshi, N., Sakaguchi, M., Hamasaki, N., Mihara, K. 2002. Membrane topogenesis of the three amino-terminal transmembrane segments of glucose-6-phosphatase on endoplasmic reticulum. Biochem. Biophys. Res. Commun. 292:153–160

    Article  PubMed  CAS  Google Scholar 

  • van Geest, M., Lolkema, J.S. 2000. Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol. Mol. Biol. Rev. 64:13–33

    Article  PubMed  Google Scholar 

  • van Klompenburg, W., Nilsson, I., von Heijne, G., de Kruijff, B. 1997. Anionic phospholipids are determinants of membrane protein topology. EMBO J. 16:4261–4266

    Article  PubMed  Google Scholar 

  • Voigt, S., Jungnickel, B., Hartmann, E., Rapoport, T.A. 1996. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J. Cell Biol. 134:25–35 von Heijne, G. 1986. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology. EMBO J. 5:3021-3027 von Heijne, G. 1994. Membrane proteins: from sequence to structure. Annu. Rev. Biophys. Biomol. Struct. 23:167-192

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G. 1996. Principles of membrane protein assembly and structure. Prog. Biophys. Mol. Biol. 66:113–139

    Article  Google Scholar 

  • von Heijne, G. 1999. Recent advances in the understanding of membrane protein assembly and structure. Q. Rev. Biophys. 32:285–307

    Article  Google Scholar 

  • Wahlbereg, J.M., Spiess, M. 1997. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol. 137:555–562

    Article  Google Scholar 

  • Wilkinson, B.M., Critchley, A.J., Stirling, C.J. 1996. Determination of the transmembrane topology of yeast Sec61p, an essential component of the endoplasmic reticulum translocation complex. J. Biol. Chem. 271:25590–25597

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, B.M., Regnacq, M., Stirling, C.J. 1997. Protein translocation across the membrane of the endoplasmic reticulum. J. Membrane Biol. 155:189–197

    Article  CAS  Google Scholar 

  • Yost, C.S., Lopez, C.D., Prusiner, S.B., Myers, R.M., Lingappa, V.R. 1990. Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein. Nature 343:669–672

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.T., Chen, M., Han, E., Wang, C., 1998, Dissection of de novo membrane insertion activities of internal transmembrane segments of ATP-binding-cassette transporters: toward understanding topological rules for membrane assembly of polytopic membrane proteins. Mol. Biol. Cell 9:853–863

    PubMed  CAS  Google Scholar 

  • Zhou, F.X., Merianos, H.J., Brunger, A.T., Engelman, D.M. 2001. Polar residues drive association of polyleucine transmembrane helices. Proc. Natl. Acad. Sci. USA 98:2250–2255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, R.J. Understanding the biogenesis of polytopic integral membrane proteins. J. Membrane Biol. 192, 149–157 (2003). https://doi.org/10.1007/s00232-002-1071-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-002-1071-z

Key words

Navigation