Skip to main content
Log in

Numerical analysis of time-fractional non-Fourier heat conduction in porous media based on Caputo fractional derivative under short heating pulses

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this research, the heat transport in porous media (sand particles and interstitial gas) under short heating pulses is examined, taking into account the non-Fourier effects. The time-fractional heat conduction equation based on the Caputo definition is proposed to examine the thermal response of porous media in short-time scales. The results of the time-fractional model are compared to experimental data, which proves the accuracy of this model as well as its capability to describe the fast transient thermal process, the local thermal nonequilibrium condition, and the energy exchange between the solid and gaseous phases. Additionally, the influence of variation in the different parameters, including the order of fractionality and heating pulse widths are investigated, and it has been proved that the gas-solid interactions in the fast transient process play a vital role in heat transfer mechanism of porous media, especially in the near-field locations to the heater with short pulse width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Luikov AV, Shashkov AG, Vasiliev LL, Fraiman YE (1968) Thermal conductivity of porous systems. Int J Heat Mass Transf 11(2):117–140. https://doi.org/10.1016/0017-9310(68)90144-0

    Article  Google Scholar 

  2. Kou J, Wu F, Lu H, Xu Y, Song F (2009) The effective thermal conductivity of porous media based on statistical self-similarity. Phys Lett A 374(1):62–65. https://doi.org/10.1016/j.physleta.2009.10.015

    Article  MATH  Google Scholar 

  3. Huai X, Wang W, Li Z (2007) Analysis of the effective thermal conductivity of fractal porous media. Appl Therm Eng 27(17–18):2815–2821. https://doi.org/10.1016/j.applthermaleng.2007.01.031

    Article  Google Scholar 

  4. Behrang A, Taheri S, Kantzas A (2016) A hybrid approach on predicting the effective thermal conductivity of porous and nanoporous media. Int J Heat Mass Transf 98:52–59. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.012

    Article  Google Scholar 

  5. Wei H, Zhao S, Rong Q, Bao H (2018) Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transf 127:908–916. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.082

    Article  Google Scholar 

  6. Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) The effect of local thermal non-equilibrium on impulsive conduction in porous media. Int J Heat Mass Transf 50(15–16):3244–3249. https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.016

    Article  MATH  Google Scholar 

  7. Lv YG, Huai XL, Wang WW (2006) Study on the effect of micro geometric structure on heat conduction in porous media subjected to pulse laser. Chem Eng Sci 61(17):5717–5725. https://doi.org/10.1016/j.ces.2006.05.003

    Article  Google Scholar 

  8. Vadasz P (2007) On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium. Int J Heat Mass Transf 50:4131–4140. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.017

    Article  MATH  Google Scholar 

  9. Villatoro FR, Pérez J, Santander JLG, Borovsky MA, Ratis YL, Izzheurov EA, Fernández de Córdoba P (2011) Perturbation analysis of the heat transfer in porous media with small thermal conductivity. J Math Anal Appl 374(1:57–70. https://doi.org/10.1016/j.jmaa.2010.08.038

    Article  MathSciNet  MATH  Google Scholar 

  10. Ouyang XL, Xu RN, Jiang PX (2017) Three-equation local thermal non-equilibrium model for transient heat transfer in porous media: the internal thermal conduction effect in the solid phase. Int J Heat Mass Transf 115:1113–1124. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.088

    Article  Google Scholar 

  11. Gandomkar A, Gray KE (2018) Local thermal non-equilibrium in porous media with heat conduction. Int J Heat Mass Transf 124:1212–1216. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.011

    Article  Google Scholar 

  12. Javadzadegan A, Joshaghani M, Moshfegh A, Akbari OA, Afrouzi HH, Toghraie D (2020) Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: an LBM approach. Physica A: Statistical Mechanics and its Applications 537:122439. https://doi.org/10.1016/j.physa.2019.122439

    Article  MathSciNet  Google Scholar 

  13. Arasteh H, Mashayekhi R, Toghraie D, Karimipour A, Bahiraei M, Rahbari A (2019) Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. J Therm Anal Calorim 137:1045–1058. https://doi.org/10.1007/s10973-019-08007-z

    Article  Google Scholar 

  14. Jourabian M, Darzi AAR, Toghraie D, Akbari OA (2018) Melting process in porous media around two hot cylinders: numerical study using the lattice Boltzmann method. Physica A: Statistical Mechanics and its Applications 509:316–335. https://doi.org/10.1016/j.physa.2018.06.011

    Article  Google Scholar 

  15. Pourfattah F, Toghraie D, Akbari OA, Adhampour M, Shahsavar A (2020) Investigation of mixing process of two different gases in a micromixer: effect of porous medium and knudsen number. Journal of Porous Media 23(1):81–99. https://doi.org/10.1615/JPorMedia.2019027028

    Article  Google Scholar 

  16. Arasteh H, Mashayekhi R, Ghaneifar M, Toghraie D, Afrand M (2019) Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08870-w

  17. Minkowycz WJ, Haji-Sheikh A, Vafai K (1999) On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the sparrow number. Int J Heat Mass Transf 42:3373–3385. https://doi.org/10.1016/S0017-9310(99)00043-5

    Article  MATH  Google Scholar 

  18. Agwu Nnanna AG, Haji-Sheikh A, Harris KT (2004) Experimental study of local thermal non-equilibrium phenomena during phase change in porous media. Int J Heat Mass Transf 47:4365–4375. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.029

    Article  MATH  Google Scholar 

  19. Wang CY, Mobedi M, Kuwahara F (2019) Analysis of local thermal non-equilibrium condition for unsteady heat transfer in porous media with closed cells: sparrow number. Int J Mech Sci 157–158:13–24. https://doi.org/10.1016/j.ijmecsci.2019.04.022

    Article  Google Scholar 

  20. Akbari M, Saedodin S, Toghraie DS, Kowsary F (2015) Analytical solution of the problem of non-Fourier heat conduction in a slab using the solution structure theorems. Heat Transfer Research 46(5):447–464. https://doi.org/10.1615/HeatTransRes.2014006434

    Article  Google Scholar 

  21. Akbari M, Saedodin S, Toghraie DS, Kowsary F (2014) An analytical solution of non-Fourier heat conduction in a slab with nonhomogeneous boundary conditions using the superposition technique and solution structure theorem. Heat Transfer Research 45(7):621–641. https://doi.org/10.1615/HeatTransRes.2014007120

    Article  Google Scholar 

  22. Mozafarifard M, Azimi A, Mehrzad S (2020) Numerical simulation of dual-phase-lag model and inverse fractional single-phase-lag problem for the non-Fourier heat conduction in a straight fin. J Therm Sci 29:632–646. https://doi.org/10.1007/s11630-019-1137-1

    Article  Google Scholar 

  23. Mozafarifard M, Toghraie D (2020) Time-fractional subdiffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int J Heat Mass Transf 153:119592. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119592

    Article  Google Scholar 

  24. Mozafarifard M, Mortazavinejad SM, Toghraie D (2020) Numerical simulation of fractional non-Fourier heat transfer in thin metal films under short-pulse laser. International Communications in Heat and Mass Transfer 115:104607. https://doi.org/10.1016/j.icheatmasstransfer.2020.104607

    Article  Google Scholar 

  25. Kaminski W (1990) Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J Heat Transf 112(3):555–560. https://doi.org/10.1115/1.2910422

    Article  Google Scholar 

  26. Yunsheng X, Yingkui G, Zengyuan G (1996) Experimental research on transient heat transfer in sand. Acta Mech Sinica 12(l):39–46. https://doi.org/10.1007/BF02486760

    Article  MATH  Google Scholar 

  27. Xingang L, Zengyuan G, Yunsheng X (1996) Theoretical analysis of transient heat conduction in sand. Science in China Series A-Mathematics 39(8):855–863 http://engine.scichina.com/doi/10.1360/ya1996-39-8-855

    Google Scholar 

  28. Agwu Nnanna AG, Haji-Sheikh A, Harris KT (2005) Experimental study of non-Fourier thermal response in porous media. Journal of Porous Media 8(1):31–44. https://doi.org/10.1615/JPorMedia.v8.i1.30

    Article  MATH  Google Scholar 

  29. Tzou DY (2015) Macro- to microscale heat transfer: the lagging behavior. John Wiley & Sons, Second edition

    Google Scholar 

  30. Abbas IA (2014) Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties. Meccanica 49(7):1697–1708. https://doi.org/10.1007/s11012-014-9948-3

    Article  MATH  Google Scholar 

  31. Abbas IA (2014) Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. J Mech Sci Technol 28(10):4193–4198. https://doi.org/10.1007/s12206-014-0932-6

    Article  Google Scholar 

  32. Abbas IA, Youssef HM (2013) Two-temperature generalized thermoelasticity under ramp-type heating by finite element method. Meccanica 48(2):331–339. https://doi.org/10.1007/s11012-012-9604-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Abbas IA, Youssef HM (2012) A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method. Int J Thermophys 33(7):1302–1313. https://doi.org/10.1007/s10765-012-1272-3

    Article  Google Scholar 

  34. Abbas IA, Othman MIA (2011) Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress. J Vib Control 18(2):175–182. https://doi.org/10.1177/1077546311402529

    Article  MathSciNet  Google Scholar 

  35. Abbas IA (2006) Natural frequencies of a poroelastic hollow cylinder. Acta Mech 186:229–237. https://doi.org/10.1007/s00707-006-0314-y

    Article  MATH  Google Scholar 

  36. Saeed T, Abbas IA, Marin M (2020) A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 12(3):448. https://doi.org/10.3390/sym12030488

    Article  Google Scholar 

  37. Palani G, Abbas IA (2009) Free convection MHD flow with thermal radiation from an impulsively started vertical plate. Nonlinear Analysis: Modelling and Control 14(1):73–84. https://doi.org/10.15388/NA.2009.14.1.14531

    Article  MATH  Google Scholar 

  38. Cattaneo C (1958) Sur Une forme de l’equation de la chaleur elinant le paradoxe d’une propagation instantance. CR Academy of Science Paris 247:431–433

    MATH  Google Scholar 

  39. Vernotte MP (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. CR Academy of Science Paris 246:3154–3155

    MATH  Google Scholar 

  40. Odibat ZM, Shawagfeh NT (2007) Generalized Taylor’s formula. Appl Math Comput 186:286–293. https://doi.org/10.1016/j.amc.2006.07.102

    Article  MathSciNet  MATH  Google Scholar 

  41. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  42. Ghazizadeh HR, Maerefat M, Azimi A (2010) Explicit and implicit finite difference schemes for fractional Cattaneo equation. J Comput Phys 229(19):7042–7057. https://doi.org/10.1016/j.jcp.2010.05.039

    Article  MathSciNet  MATH  Google Scholar 

  43. S.A.A. Alem, R. Latifi, S. Angizi, N. Mohamadbeigi, M. Rajabi, E. Ghasali, Yasin Orooji, Development of Metal Matrix Composites and Nanocomposites Via Double-Pressing Double-Sintering (DPDS) Method, Materials Today Communications, 2020, 101245, https://doi.org/10.1016/j.mtcomm.2020.101245

  44. Orooji Y, Alizadeh A, Ghasali E, Derakhshandeh MR, Alizadeh M, Asl MS (2019) Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram Int 45(16):20844–20854. https://doi.org/10.1016/j.ceramint.2019.07.072

    Article  Google Scholar 

  45. Orooji Y, Ghasali E, Moradi M, Derakhshandeh MR, Alizadeh M, Asl MS et al (2019) Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram Int 45(13):16288–16296. https://doi.org/10.1016/j.ceramint.2019.05.154

    Article  Google Scholar 

  46. Orooji Y, Derakhshandeh MR, Ghasali E, Alizadeh M, Asl MS et al (2019) Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram Int 45(13):16015–16021. https://doi.org/10.1016/j.ceramint.2019.05.113

    Article  Google Scholar 

  47. C.J Ho, YJ Hsieh, S Rashidi, Y Orooji, WM Yan, Thermal-hydraulic analysis for alumina/water nanofluid inside a mini-channel heat sink with latent heat cooling ceiling-An experimental study; International Communications in Heat and Mass Transfer 112, 104477, 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104477

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafarifard, M., Toghraie, D. Numerical analysis of time-fractional non-Fourier heat conduction in porous media based on Caputo fractional derivative under short heating pulses. Heat Mass Transfer 56, 3035–3045 (2020). https://doi.org/10.1007/s00231-020-02920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02920-y

Keywords

Navigation