Skip to main content
Log in

Moisture sorption isotherms of modified cassava flour during drying and storage

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Modified cassava flour is produced by drying processes and usually, in Indonesia, stored for several months after production up to selling and utilization. During storage, flour can experience degradations in quality, particularly if ambient conditions are unfavorable. In the present study, the adsorption and desorption isotherms of modified cassava flour were determined over a range of water activities (aw) from 0.05 to 0.84 at three different temperatures (27, 40 and 50°C), which are commonly experienced in the tropical environment, using the static gravimetric method. The suitability of eight widely recommended mathematical models in the literature for food sorption isotherms were investigated. The modified cassava flour shows a type II (sigmoid) isotherm curve and the moisture sorption hysteresis loop was observed at all examined temperatures. The effect of the temperature on both adsorption and desorption isotherms for the complete range of water activity (aw) was observed. Adsorption and desorption data of modified cassava flour were best fitted by the Henderson, Peleg, and Chung-Pfost models at 27, 40 and 50°C, respectively. According to the adsorption results, the moisture content of modified cassava flour should not be higher than 9.34% (db) at room temperature (27°C) to ensure microbial stability during storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A, B, C, D :

Models constant of sorption isotherms

X e :

Equilibrium moisture content (kg water/kg dry basis)

X m :

Monolayer moisture content (kg water/kg dry basis)

a w :

Water activity (dimensionless)

r :

Coefficient of correlation

SE :

Standard error

P :

Relative percent error (%)

N :

Number of observations

ƞ p :

Number of parameters

T :

Temperature (°C)

pr :

Predicted

ex :

Experimental

j :

Samples number

References

  1. Hidayat A, Zuaraida N, Hanarida I, Damardjati DS (2000) Cyanogenic content of cassava root of 179 cultivars grown in Indonesia. J Food Compos Anal 13:71–82

    Article  Google Scholar 

  2. Suryaningrat IB, Amilia W, Choiron M (2015) Current condition of agro-industrial supply chain of cassava products: A case survey of East Java, Indonesia. Agric Agric Sci Proc 3:137–142

    Google Scholar 

  3. Widodo Y, Wahyuningsih S, Newby J (2015) Fuelling cassava development to meet greater demand for food and biofuel in Indonesia. Enrgy Proced 65:386–394

    Article  Google Scholar 

  4. Purwandari U, Hidayati D, Tamam B, Arifin S (2014) Gluten-free noodle made from gathotan (an Indonesian fungal fermented cassava) flour: cooking quality, textural, and sensory properties. Int Food Res J 21(4):1615–1621

    Google Scholar 

  5. Kusumayanti H, Handayani NA, Santosa H (2015) Swelling power and water solubility of cassava and sweet potatoes flour. Procedia Environ Sci 23:164–167

    Article  Google Scholar 

  6. Shittu TA, Raji AO, Sanni LO (2007) Bread from composite cassava-wheat flour: I. Effect of baking time and temperature on some physical properties of bread loaf. Food Res Int 40:280–290

    Article  Google Scholar 

  7. Indonesian National Statistical Bureau (2017) Production of Cassavas by Province (tons), 1993–2015. Indonesian National Statistical Bureau, Jakarta

    Google Scholar 

  8. Argo BD, Sandra S, Ubaidillah U (2018) Mathematical modelling on the thin layer drying kinetics of cassava chips in multipurpose convective-type tray dryer heated by a gas burner. J Mech Sci Technol 32(7):3427–3435

    Article  Google Scholar 

  9. Hawa LC, Ubaidillah U, Wibisono Y (2019) Proper model of thin layer drying curve for taro (Colocasia esculenta L. Schott) chips. Int Food Res J 26(1):209–216

    Google Scholar 

  10. Wibisono Y, Ubaidillah U, Hawa LC (2019) Microstructure changes of taro (Colocasia esculenta L. Schott) chips and grains during drying. IOP Conf Ser: Earth Environ Sci 230:012008

    Article  Google Scholar 

  11. Bejar AK, Mihoubi NB, Kechaou N (2012) Moisture sorption isotherms - Experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chem 132:1728–1735

    Article  Google Scholar 

  12. Aviara NA, Ajibola OO (2002) Thermodynamics of moisture sorption in melon seed and cassava. J Food Eng 55:107–113

    Article  Google Scholar 

  13. Tungsangprateep S, Jindal VK (2004) Sorption isotherms and moisture diffusivity in fried cassava-shrimp chips. Int J Food Prop 7(2):215–227

    Article  Google Scholar 

  14. Perdomo J, Cova A, Sandoval AJ, Garcia L, Laredo E, Muller AJ (2009) Glass transition temperatures and water sorption isotherms of cassava starch. Carbohyd Polym 76:305–313

    Article  Google Scholar 

  15. Cova A, Sandoval AJ, Balsamo V, Muller AJ (2010) The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohyd Polym 81:660–667

    Article  Google Scholar 

  16. Chiste RC, Silva PA, Lopes AS, da Silva Pena R (2012) Sorption isotherms of tapioca flour. Int J Food Sci Tech 47(4):870–874

    Article  Google Scholar 

  17. Suppakul P, Chalernsook B, Ratisuthawat B, Prapasitthi S, Munchukangwan N (2013) Empirical modelling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing-antiplasticizing effects. LWT Food Sci Technol 50:290–297

    Article  Google Scholar 

  18. Kaya A, Aydin O, Dincer I (2010) Comparison of experimental data with results of some drying models for regularly shaped products. Heat Mass Transfer 46:555–562

    Article  Google Scholar 

  19. Belghith A, Azzouz S, ElCafsi A (2016) Desorption isotherms and mathematical modelling of thin layer drying kinetics of tomato. Heat Mass Transfer 52:407–419

    Article  Google Scholar 

  20. Ghnimi T, Hassini L, Bagane M (2016) Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves. Heat Mass Transfer 52:2649–2659

    Article  Google Scholar 

  21. Bahar R, Azzouz S, Remond R, Ouertani S, Elaieb MT, El Cafci MA (2017) Moisture sorption isotherms and thermodynamic properties of Oak wood (Quercus robur and Quercus canariensis): optimization of the processing parameters. Heat Mass Transfer 53:1541–1552

    Article  Google Scholar 

  22. Arufe S, Torres MD, Chenlo F, Moreira R (2018) Air drying modelling of Mastocarpus stellatus seaweed asource of hybrid carrageenan. Heat Mass Transfer 54:177–184

    Article  Google Scholar 

  23. Fakhfakh R, Mihoubi D, Kechaou N (2018) Moisture sorption isotherms and thermodynamic properties of bovine leather. Heat Mass Transfer 54:1163–1176

    Article  Google Scholar 

  24. Mbarek R, Mihoubi D (2019) Thermodynamic properties and water desorption isotherms of Golden Delicious apples. Heat Mass Transfer 55:1405–1418

    Article  Google Scholar 

  25. Shomali A, Souraki BA (2019) Experimental investigation and mathematical modelling of drying of green tea leaves in a multi-tray cabinet dryer. Heat Mass Transfer 55:3645–3659

    Article  Google Scholar 

  26. Hawa LC, Ali SB, Fujii S, Yoshimoto N, Yamamoto S (2014) Drying rates and desorption isotherms of lemon juice. Japan J Food Eng 15(2):105–108

    Article  Google Scholar 

  27. Hawa LC, Ali SB, Fujii S, Yoshimoto N, Yamamoto S (2014) Effects of pre treatments on browning of lemon peels during drying. Jpn J Food Eng 15(3):181–187

    Article  Google Scholar 

  28. Aktas T, Fujii S, Kawano Y, Yamamoto S (2007) Effects of pretreatments of sliced vegetables with trehalose on drying characteristics and quality of dried products. Food Bioprod Process 85(3):178–183

    Article  Google Scholar 

  29. Arslan N, Togrul H (2006) The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. J Stored Prod Res 42:112–135

    Article  Google Scholar 

  30. Ertugay MF, Certel M (2000) Moisture sorption isotherms of cereals at different temperatures. Mol Nutr Food Res 44(2):107–109

    Google Scholar 

  31. Oyalade OJ, Tunde-Akitunde TY, Igbeka JC, Oke MO, Raji OY (2008) Modelling moisture sorption isotherms for maize flour. J Stored Prod Res 44:179–185

    Article  Google Scholar 

  32. Garcia-Perez JV, Carcel JA, Clemente G, Mulet A (2008) Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT Food Sci Technol 41(1):18–25

    Article  Google Scholar 

  33. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: A review. Food Bioprod Process 80(2):118–128

    Article  Google Scholar 

  34. Sanni LO, Atere C, Ayoade K (1997) Moisture sorption isotherms of fufu and tapioca at different temperatures. J Food Eng 34:203–212

    Article  Google Scholar 

  35. Koua BK, Koffi PMK, Gbaha P, Toure S (2012) Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta). J Food Sci Technol 51:1711–1723

    Article  Google Scholar 

  36. Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods: Part 1 - A review. Int J Food Sci Technol 13(3):159–174

    Article  Google Scholar 

  37. Basu S, Shivhare US, Mujumdar AS (2006) Models for sorption isotherms for foods: A review. Dry Technol 24(8):917–930

    Article  Google Scholar 

  38. Cordeiro DS, Raghavan GSV, Oliviera WP (2006) Equilibrium moisture content models for Maytenus ilicifolia leaves. Biosyst Eng 94(2):221–228

    Article  Google Scholar 

  39. Silva EM, da Silva JS, Pena RS, Rogez H (2011) A combined approach to optimize the drying process of flavonoid-rich leaves (Inga edulis) using experimental design and mathematical modelling. Food Bioprod Process 89:39–46

    Article  Google Scholar 

  40. Iglesias HA, Chirife J (1982) Handbook of Food Isotherms: Water Sorption Parameters for Food and Food Components. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to La Choviya Hawa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawa, L.C., Ubaidillah, U., Damayanti, R. et al. Moisture sorption isotherms of modified cassava flour during drying and storage. Heat Mass Transfer 56, 2389–2396 (2020). https://doi.org/10.1007/s00231-020-02866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02866-1

Keywords

Navigation