Skip to main content
Log in

Sand dunes effect on the productivity of a single slope solar distiller

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Access to drinking water in many parts of the globe is shrinking over the years and much of the water resources are polluted or unpurified. North Africa is facing a huge water shortage due to drought and climate change. Water desalination has become very popular and serves as solar distillation which is proving to be an economical, simple and ecological technique, especially in rural and remote areas. Significant efforts have been made by many researchers in various laboratories to increase and improve the productivity of solar greenhouse distillation. In the present work, emphasis has been placed on the study of a single slope solar distiller having as dimension 50 × 50 cm, in the thickness of the impure water is 1 cm. Natural sand dunes from the El Oued South region of Algeria have been tested as a factor of efficiency improvement. A layer of this sand was deposited on the bottom of the distiller covering the whole surface on which the submit water is emerged. The results show that the productivity of distilled water has unfortunately decreased by 1.46 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Mew :

hourly condensate production (kg/m2 h)

Lfg :

latent heath (kJ/kg K)

A:

area (m2)

I(t):

solar irradiance (W/h)

Ta :

ambiant temperatue (°C)

Tw :

water temperature (°C)

Ts:

Sky temperature (°C)

ηth :

thermal efficiency (%)

ηpe :

passive exergy efficiency (%)

Exoutput :

the hourly exergy output efficiency (W/m2)

Exinput :

the hourly exergy input efficiency (W/m2)

References

  1. Ghaffour N, Bundschuh J, Mahmoudi H, Goosen MFA (2015) Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 356:94–114. https://doi.org/10.1016/j.desal.2014.10.024

    Article  Google Scholar 

  2. Khechekhouche A, Boukhari A (2016) The effect of a refractor on the productivity of a single slope solar distiller. In: The 4th international seminar on new and renewable energies, Algeria

  3. Chandrashekara M, Yadav A (2017) Water desalination system using solar heat: a review. Renewable Sustainable Energy Rev 67:1308–1330. https://doi.org/10.1016/j.rser.2016.08.058

    Article  Google Scholar 

  4. Organisation mondiale de la santé (OMS) (1994) Directives de qualité pour l’eau de boisson. Recommandations Vol. 1. 2e édn. OMS, Genève, pp 187–195

  5. Youcef L, Samia A (2001) Efluoruration des eaux souterraines de sud algerien par la chaux et le sulfat d’aluminium. Courrier du Savoir 1:65–71

  6. Bouchekima B (2003) Solar desalination plant for small size use in remote arid areas of South Algeria for the production of drinking water. Desalination 156(1–3):353–354. https://doi.org/10.1016/S0011-9164(03)00367-9

    Article  Google Scholar 

  7. Bouchekima B (2003) A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria. Desalination 159:197–204. https://doi.org/10.1016/S0011-9164(03)90071-3

    Article  Google Scholar 

  8. Bouchekima B (2003) A solar desalination plant for domestic water needs in arid areas of South Algeria. Desalination 153:65–69. https://doi.org/10.1016/S0011-9164(02)01094-9

    Article  Google Scholar 

  9. Khechekhouche A, Benhaoua B, Driss Z (2017) Solar distillation between a simple and double-glazing. Recueil de mécanique 2(2). https://doi.org/10.5281/zenodo.1169839

  10. Badran O, Abu-Khader MM (2007) Evaluating thermal performance of a single slope solar still. Heat Mass Transfer 43:985. https://doi.org/10.1007/s00231-006-0180-0

    Article  Google Scholar 

  11. Omara ZM, Kabeel AE, Younes MM (2014) Enhancing the stepped solar still performance using internal and external reflectors. Energy Conver Manage 78:876–881

    Article  Google Scholar 

  12. Eid EI, Khalaf-Allah RA, Dahab MA (2018) An experimental study of solar desalination using free jets and an auxiliary hot air stream heat. Mass Transfer 54:1177

    Article  Google Scholar 

  13. Muthu Manokar A, Prince Winston D, Kabeel AE, Sathyamurthy R, Arunkumar T. (2018) Heat Mass Transfer 54:593 https://doi.org/10.1007/s00231-017-2170-9

    Article  Google Scholar 

  14. Pandey PK, Upadhyay R (2016) Desalination of brackish water using solar energy. Int J Renew Energy Res 6(2):350–354. 19

  15. Panchal H, Awasthi A (2017) Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes. Heat Mass Transfer 53:1943. https://doi.org/10.1007/s00231-016-1953-8

    Article  Google Scholar 

  16. Khechekhouche A, Boukhari A, Driss Z, Benhissen N (2017) Seasonal effect on solar distillation in the El-Oued region of south-east Algeria. Int J Energetica 2(1):42–45

    Google Scholar 

  17. Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Elsheikh AH, Mohamed SIT, Kabeel AE (2017) Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Thermal Eng J 113:684–693

    Article  Google Scholar 

  18. Elango T, Kannan A, Murugavel K (2015) Performance study on single basin single slope solar still with different water nanofluids. Desalination 360:45 51. https://doi.org/10.1016/j.desal.2015.01.004

    Article  Google Scholar 

  19. Mahiana O, Kianifara A, Herisb SZ, Wencd D, Sahine AZ, Wongwises S (2017) Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy 36:134–155. https://doi.org/10.1016/j.nanoen.2017.04.025

    Article  Google Scholar 

  20. Elsheikh AH, Sharshir SW, Mostafa ME, Essa FA, Ali MKA (2017) Applications of nanofluids in solar energy: a review of recent advances. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.10.108

    Article  Google Scholar 

  21. Muthu M, Prince Winstonb D, Kabeel AE, Sathyamurthy R (2018) Sustainable fresh water and power production by integrating PV panel in inclined solar still. J Clean Prod 172(20):2711–2719

    Google Scholar 

  22. Panchal H (2018) Annual performance analysis of various energy storage materials in the upper basin of a double-basin solar still with vacuum tubes. Int J Ambient Energy. https://doi.org/10.1080/01430750.2018.1472653

    Article  Google Scholar 

  23. Panchal H, Mohan I (2017) Various methods applied to solar still for enhancement of distillate output. Desalination 415:76–89. https://doi.org/10.1016/j.desal.2017.04.015

    Article  Google Scholar 

  24. Praveen Kumara B, Winstona P, Pounraj P, Muthu Manokar A, Sathyamurthy R, Kabeel AE (2018) Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination 435:140–151

    Article  Google Scholar 

  25. Madhu B, Balasubramanian BE, Ravishankar S, Nagarajan PK, Devarajan MB, Ramani B, Muthu Manokar A (2018) Exergy analysis of solar still with the sand heat energy storage. Appl Solar Energy 54(3)

  26. Kabeel AE, El-Agouz SA, Arunkumar T, Sathyamurthy R. In: Enhancing the performance of single slop solar still using jute cloth knited zith sand heat energy storage. Twentieth International Water Technology Conference, IWTC20. Hurghada, 2017

  27. Youcef L (2006) Elimination de polluants minéraux des eaux par des procédés physico-chimiques de précipitation et d'adsorption. PhD thesis in hydraulic sciences, Mohamed Khider University – Biskra, pp 9. http://thesis.univ-biskra.dz/2720/

  28. Miloudi AM, Remini B (2016) Water potentiality of sustainable management challenges in the Oued Souf Region, South East Algeria. Int J Energetica 1(1):36–39

    Google Scholar 

  29. https://www.tutorialspoint.com/arduino/arduino_temperature_sensor.htm. Consult: 26/12/2018

  30. Mahfoudi N, Khechekouche A, Moummi A, Benhaoua B, El Ganaoui M (2015) Design and characterization of a portable heat storage facility. Mech Ind 16(4). https://doi.org/10.1051/meca/2015021

    Article  Google Scholar 

  31. http://www.kippzonen.com/Product/13/CMP11-Pyranometer#.XCuIqVVKjIU. Consult: 26/12/2018

  32. Manokar AM, Winston DP, Sathyamurthy R, Kabeel AE, Prasath AR (2018) Experimental investigation on pyramid solar still in passive and active mode. Heat Mass Transf:1–14. https://doi.org/10.1007/s00231-018-2483

  33. Soulié F (2005) Cohésion par capillarité et comportement mécanique de milieux granulaires. PhD Thesis, Université Montpellier II, pp 12–23

  34. Nemes CT, Laconsay CJ, Galbraith JM (2018) Hydrogen bonding from a valence bond theory perspective: the role of covalency. Phys Chem Chem Phys 20(32):20963–20969. https://doi.org/10.1039/c8cp03920h

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Khechekhouche.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khechekhouche, A., Benhaoua, B., Manokar, M. et al. Sand dunes effect on the productivity of a single slope solar distiller. Heat Mass Transfer 56, 1117–1126 (2020). https://doi.org/10.1007/s00231-019-02786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02786-9

Keywords

Navigation