Skip to main content
Log in

Heat transfer enhancement research of dynamical vortex generator in a solar air heater by using the piezoelectric fan array

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Most of the vortex generators are static and used in fin-and-tube heat exchangers, whereas this paper presents experimental and numerical research on the effects of piezoelectric fan array in single pass solar air heater having one side heated and the other three sides insulated. The average Nusselt number of the rectangular channel is compared in detail with different Reynolds number of the air. Two different flow direction configurations including counter flow and downstream flow has been tested. The results show that the piezoelectric fan as a vortex generator can increase the local and average Nusselt number effectively. The average Nusselt number is increased by 40~100%, whereas the pressure drop is increased by no more than 30%. The counter flow has higher local and average Nusselt number compared to the downstream flow, while higher pressure drop in the counter flow setup can be found compared to the downstream flow setup. According to the numerical simulation results, this is because the most longitude vortices are concentrated in the middle of the absorber plate and attached or reflowed to the plate in the counter flow setup. However, most of the vortices are concentrated in the back end of the plate or out of the plate in downstream flow. All of these, result from the different velocity gradient distribution at the near-wall of the heated surface. The existences of the PE fan bracket decreases the pressure drop in the downstream flow setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Pavel Charvat MO, Mauder T, Klimes L (2012) A solar air collector with integrated latent heat thermal storage. Experimental Fluid Mechanics 25. https://doi.org/10.1051/epjconf/20122501028

    Article  Google Scholar 

  2. Patil AK (2015) Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review. Renew Sust Energ Rev 42:681–689. https://doi.org/10.1016/j.rser.2014.10.063

    Article  Google Scholar 

  3. Alam T, Saini RP, Saini JS (2014) Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater duct. Energy Convers Manag 86:952–963. https://doi.org/10.1016/j.enconman.2014.06.050

    Article  Google Scholar 

  4. Bekele A, Mishra M, Dutta S (2014) Performance characteristics of solar air heater with surface mounted obstacles. Energy Convers Manag 85:603–611. https://doi.org/10.1016/j.enconman.2014.04.079

    Article  Google Scholar 

  5. Cadafalch J, Cònsul R (2014) Detailed modelling of flat plate solar thermal collectors with honeycomb-like transparent insulation. Sol Energy 107:202–209. https://doi.org/10.1016/j.solener.2014.06.003

    Article  Google Scholar 

  6. Youcef-Ali S (2005) Study and optimization of the thermal performances of the offset rectangular plate fin absorber plates, with various glazing. Renew Energy 30(2):271–280. https://doi.org/10.1016/j.renene.2004.04.009

    Article  Google Scholar 

  7. Kumar R, Chand P (2017) Performance enhancement of solar air heater using herringbone corrugated fins. Energy 127:271–279. https://doi.org/10.1016/j.energy.2017.03.128

    Article  Google Scholar 

  8. Naphon P (2005) Effect of porous media on the performance of the double-pass flat plate solar air heater. International Communications in Heat and Mass Transfer 32(1):140–150. https://doi.org/10.1016/j.icheatmasstransfer.2004.11.001

    Article  Google Scholar 

  9. Bergles AE (2002) ExHFT for fourth generation heat transfer technology. Exp Thermal Fluid Sci 26(2–4). https://doi.org/10.1016/S0894-1777(02)00145-0

    Article  Google Scholar 

  10. Jacobi AM, Shah RK (1995) Heat Transfer Surface Enhancement through the Use of Longitudinal Vortices:A Review of Recent Progress. Exp Thermal Fluid Sci 11(3). https://doi.org/10.1016/0894-1777(95)00066-U

    Article  Google Scholar 

  11. Skullong S (2014) Experimental Investigation on Turbulent Convection in Solar Air Heater Channel Fitted with Delta Winglet Vortex Generator. Fluid Dynamics and Transport Phenomena 22. https://doi.org/10.1016/S1004-9541(14)60030-6

    Article  Google Scholar 

  12. Tang L-H, Min Z, Xie G-N, Wang Q-W (2009) Fin Pattern Effects on Air-Side Heat Transfer and Friction Characteristics of Fin-and-Tube Heat Exchangers with Large Number of Large-Diameter Tube Rows. Heat Transfer Engineering 30(3):171–180. https://doi.org/10.1080/01457630802304253

    Article  Google Scholar 

  13. Kimber M, Suzuki K, Kitsunai N, Seki K, Garimella SV (2009) Pressure and Flow Rate Performance of Piezoelectric Fans. IEEE Transactions on Components and Packaging Technologies 32(4):766–775. https://doi.org/10.1109/tcapt.2008.2012169

    Article  Google Scholar 

  14. Abdullah MK, Ismail NC, Abdullah MZ, Mujeebu MA, Ahmad KA, Ripin ZM (2012) Effects of tip gap and amplitude of piezoelectric fans on the performance of heat sinks in microelectronic cooling. Heat Mass Transf 48(6):893–901. https://doi.org/10.1007/s00231-011-0944-z

    Article  Google Scholar 

  15. Li X-J, J-z Z, Tan X-m (2017) Convective heat transfer on a flat surface induced by a vertically-oriented piezoelectric fan in the presence of cross flow. Heat Mass Transf 53(9):2745–2768. https://doi.org/10.1007/s00231-017-2019-2

    Article  Google Scholar 

  16. Bailey PH, Williamson WF (1965) Some experiments on drying grain by solar radiation. J Agric Eng Res 10(3):191–196. https://doi.org/10.1016/0021-8634(65)90115-0

    Article  Google Scholar 

  17. Tong B (2009) Theory of vortex dynamics. Press of USCT, HeiFei

    Google Scholar 

  18. Lin C-N (2013) Heat transfer enhancement analysis of a cylindrical surface by a piezoelectric fan. Appl Therm Eng 50(1):693–703. https://doi.org/10.1016/j.applthermaleng.2012.07.023

    Article  Google Scholar 

  19. Alastair Hales XJ (2018) A Review of Piezoelectric Fans for Low Energy Cooling of Power Electronics. Appl Energy 215(C):321–337. https://doi.org/10.1016/j.apenergy.2018.02.014

    Article  Google Scholar 

  20. Lin CN, Jang JY, Leu JS (2016) A Study of an Effective Heat-Dissipating Piezoelectric Fan for High Heat Density Devices. Energies 9(8):610

    Article  Google Scholar 

  21. Maaspuro M (2016) Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs — A review. Microelectron Reliab 63:342–353

    Article  Google Scholar 

  22. Shyu J-C, Syu J-Z (2014) Plate-fin array cooling using a finger-like piezoelectric fan. Appl Therm Eng 62(2):573–580. https://doi.org/10.1016/j.applthermaleng.2013.10.021

    Article  Google Scholar 

  23. ASHRAE (1997) ANSI_ASHRAE 51–07 (ANSIAMCA 210–07) Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating

  24. Burmeister L (1976) Convective heat transfer. John Wiley & Sons, New York

    Google Scholar 

  25. Shah RK, London AL (1978) Laminer flow forced convection in ducts. Academic Press, London

    Google Scholar 

  26. Richman JWA (1972) Developing turbulent flow in smooth pipes. Flow, Turbulence and Combustion 28:419. https://doi.org/10.1007/BF00413081

    Article  MATH  Google Scholar 

  27. Rao S (2004) Mechanical Vibrations, Fourth Edition edn. Pearson Education Asia Limited and Tsinghua University Press, Beijing

    Google Scholar 

  28. Rahmati Aidinlou AMNH (2017) Heat flux: thermohydraulic investigation of solar air heaters used in agroindustrial applications. Heat Mass Transf 53:12. https://doi.org/10.1007/s00231-016-1864-8

    Article  Google Scholar 

  29. Jie-Zhi Wu H-YM, Zhou M-D (2006) Vorticity and Vortex Dynamics. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  30. You D, Wang M, Mittal R, Moin P (2006) Large-Eddy Simulations of Longitudinal Vortices Embedded in a Turbulent Boundary Layer. AIAA J 44(12):3032–3039. https://doi.org/10.2514/1.22043

    Article  Google Scholar 

  31. Tang LH, Chu WX, Ahmed N, Zeng M (2016) A new configuration of winglet longitudinal vortex generator to enhance heat transfer in a rectangular channel. Appl Therm Eng 104:74–84. https://doi.org/10.1016/j.applthermaleng.2016.05.056

    Article  Google Scholar 

  32. Ke Z, Chen CL, Li K, Wang S, Chen CH (2018) Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel. Int J Heat Mass Transf 132:871–885. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.064

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Jian-feng Ren for his useful comments on this work and special work by Mr. Yu-xian Li for the experiment fixture design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Jing.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Jing, C. & Zhao, Y. Heat transfer enhancement research of dynamical vortex generator in a solar air heater by using the piezoelectric fan array. Heat Mass Transfer 56, 825–847 (2020). https://doi.org/10.1007/s00231-019-02735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02735-6

Navigation