Skip to main content
Log in

Physico-chemical, thermal, thermodynamic and kinetic characterization of a porous material (Di-calcium phosphate)

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The sorption isotherms of di-calcium phosphate (DCP) were determined using the gravimetric method at four temperatures. The sorption curves were fitted by the Guggenheim-Anderson-deBoer (GAB) model. The dehydration process was studied by means of X-ray diffraction. Thermo-gravimetric /differential thermal analyses (TGA / DTA) were used to record the loss of water and the nature of the products was studied by Fourier Transform Infrared Spectroscopy. The morphology of DCP was tested using the electronic scanning morphology (SEM). The thermal conductivity was determined using Hot Disk method. DCP convective drying kinetics modeling was conducted by the experimental study of the aero-thermal condition effects. The drying characteristic curves were then modeled using the nonlinear regression functions of MATLABR2013a. The curves predicted by the GAB model coincide well with the majority of the experimental points of the sorption isotherms. The net isosteric heat is mathematically expressed by second-order exponential function of the water content. SEM shows the presence of anhydrate and di-hydrate forms of DCP. DCP loses molecules of water when heated in two stages. Hot Disk method shows that the thermal conductivity depends heavily on the drying temperature and the product moisture. Midilli-kucuk is considered the most suitable model for the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Landin M, Rowe RC, York P (1994) Structural changes during the dehydration of Di calcium phosphate digydrate. Eur J Pharm Sci 2:245–252

    Article  Google Scholar 

  2. Jones DW, Smith JAS (1962) The structure of brushite, CaHP04,2H20. J Chem Soc 1414–1420

  3. Bohner M, Gbureck U (2008) Thermal reactions of brushite cements. J Biomed Mater Res B ApplBiomater 84(2):375-85

    Article  Google Scholar 

  4. Sainz-Díaz CI, Villacampa A, Otálora F (2004) Crystallographic properties of the calcium phosphate mineral, brushite, by means of first principles calculations. Am Mineral 89(2–3):307–313

    Article  Google Scholar 

  5. Jannot Y (2008) Isothermes de Sorption: Modèles et Détermination :Activité de l’eau Formes et modèlesdes isothermes de sorption, p 1–16

  6. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81A(1):89

    Article  Google Scholar 

  7. Kechaou N, Maalej M (2007) Desorption isotherms of imported banana application of the GAB theory. Dry Technol 2014:37–41

    Google Scholar 

  8. Lewis W (1921) The rate of drying of solid materials. Ind Eng Chem 13:427–432

    Article  Google Scholar 

  9. Abdenouri N, Idlimam A, Kouhila M (2010) Sorption isotherms and thermodynamic properties of powdered milk. Chem Eng Commun 197(8):1109–1125

    Article  Google Scholar 

  10. Tsami E, Maroulis ZB, Marinos-Kouris, Saravacos GD (1990) Heat of sorption of water in dried fruits. Int J Food Sci Technol 25(3):350–359

    Article  Google Scholar 

  11. Everett DH (1950) The thermodynamics of adsorption of monolayers on solids. Trans Faraday Soc vol 2294(1884):1925–1926

  12. Page G (1949) Factors influencing the maximum rate of air drying shelled corn in thin-layers. Purdue Univ., West Lafayette

    Google Scholar 

  13. Overhults D, White G, Hamilton HE, Ross IJ (1973) Drying soybeans with heated air. Trans ASAE 16(1):0112–0113

    Article  Google Scholar 

  14. Henderson S (1974) Progress in developing the thin layer drying equation. Trans Am Soc Agric Eng 17:1167–1168

    Article  Google Scholar 

  15. Wang GY, Singh RP (1978) A single layer drying equation for rough rice. American Society of Agricultural Engineers 1–17

  16. Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY (1980) A model for ear corn drying. Trans Am Soc Agric Eng 23:1261–1265

    Article  Google Scholar 

  17. Verma LR, Bucklin R, Endan J, Wratten F (1985) Effects of drying air parameters on rice drying models. Trans Am Soc Agric Eng 28:296–301

    Article  Google Scholar 

  18. Henderson SM, Pabis S (1962) Grain drying theory: IV the effect of airflow rate on drying index. J Agric Eng Res 7:85–89

    Google Scholar 

  19. Karathanos VT (1999) Determination of water content of dried fruits by drying kinetics. J Food Eng 39:337–344

    Article  Google Scholar 

  20. Chandra PK, Singh RP (1994) Applied numerical methods for food and agricultural engineers. CRC Press, Boca Raton, p 512

    Google Scholar 

  21. Yaldiz O, Ertekin C, Uzun H (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26:457–465

    Article  Google Scholar 

  22. Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Dry Technol 20:1503–1513

    Article  Google Scholar 

  23. Darvishi H, Azadbakht M, Rezaeiasl A, Farhang A (2013) Drying characteristics of sardine fish dried with microwave heating. J Saudi Soc Agric Sci 12(2):121–127

    Google Scholar 

  24. Bensekrane B, Harrache D, Gallart-Mateu D, de La Guardia M (2014) Effets des extraits de noyaux de dattes Phoenix dactyliferaL .sur la cristallisation de la brushitedans l ’ urine totale, Lavoisier SAS, p 1–12

  25. Banu M (2005) Mise en forme d’apatitesnanocristallines: céramiquesetciments céramiques et ciments thesis at the Institut National Polytechnique de Toulouse

  26. Maity JP et al (2011) Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin, p 3821–3830

  27. MIiyazaki T, Sivaprakasam K, Tantry J, Suryanarayanan R (2009) Physical characterization of dibasic calcium phosphate dihydrate and anhydrate. J Pharm Sci 98(3):905–916

    Article  Google Scholar 

  28. Trpkovska M, Šoptrajanov B, Malkov P (1999) FTIR reinvestigation of the spectra of synthetic brushite and its partially deuterated analogues. J Mol Struct 480–481:661–666

    Article  Google Scholar 

  29. Tortet L, Gavarri JR, Nihoul G, Dianoux AJ (1997) Study of protonic mobility in CaHPO4·2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem 132(1):6–16

    Article  Google Scholar 

  30. Schofield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31(9):606–624

    Article  Google Scholar 

  31. Dosen A, Giese RF (2011) Thermal decomposition of brushite, CaHPO4.2H2O to monetite CaHPO4 and the formation of an amorphous phase. Am Mineral 96(2–3):368–373

    Article  Google Scholar 

  32. Rousseau S, Bühler M, Lemaître J (2002) Thermometric study of brushite cements. Eur Cells Mater 3(SUPPL. 1):34–35

    Google Scholar 

  33. Klammert U (2010) 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Cranio-Maxillofac Surg 3:565–570

    Article  Google Scholar 

  34. Thony J-L (2012) Etude expérimentale des phénomènesd ‘hystérésisdans les éléments en milieuxporeux non saturés

  35. Arogba SS (2001) Effect of temperature on the moisture sorption isotherm of a biscuit containing processed mango (Mangiferaindica ) kernel ¯ flour. J Food Eng 48:121–125

    Article  Google Scholar 

  36. Crausse P, Laurent J-P, Perrin B (1996) Influence des phénomènes d hystérésissur les propriétéshydriques de matériauxporeux. Rev Gen Therm 35(410):95–106

    Article  Google Scholar 

  37. Tsami E (1991) Net isosteric heat of sorption in dried fruits. J Food Eng 14(4):327–335

    Article  Google Scholar 

  38. Iglesias J, Chirife HA (1976) Isosteric heats of water vapor sorption on dehydrated foods. Part II: Hysteresis and heat of sorption comparison with BET theory J Fd Tahd 11:91-101.

  39. Madamba P, Driscoll R, Buckle K (1996) The thin-layer drying characteristics of garlic slices. J Food Eng 29:75–97

    Article  Google Scholar 

  40. Kaya A, Aydın O (2009) An experimental study on drying kinetics of some herbal leaves. Energy Convers Manag 50(1):118–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Jmai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jmai, S., Bagane, M. & Queneudec-T’kint, M. Physico-chemical, thermal, thermodynamic and kinetic characterization of a porous material (Di-calcium phosphate). Heat Mass Transfer 55, 3589–3602 (2019). https://doi.org/10.1007/s00231-019-02625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02625-x

Keywords

Navigation