Skip to main content
Log in

Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.technichanvre.com

References

  1. Amziane S, Arnaud L (2013) Bio-aggregate-based building materials: applications to hemp concretes. ISTE, London

    Book  Google Scholar 

  2. Nozahic V, Amziane S, Torrent G et al (2012) Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem Concr Compos 34:231–241. https://doi.org/10.1016/j.cemconcomp.2011.09.002

    Article  Google Scholar 

  3. Li Z, Wang X, Wang L (2006) Properties of hemp fibre reinforced concrete composites. Compos A: Appl Sci Manuf 37:497–505. https://doi.org/10.1016/j.compositesa.2005.01.032

    Article  Google Scholar 

  4. Pretot S, Collet F, Garnier C (2014) Life cycle assessment of a hemp concrete wall: impact of thickness and coating. Build Environ 72:223–231. https://doi.org/10.1016/j.buildenv.2013.11.010

    Article  Google Scholar 

  5. Bouloc P (2013) Hemp: industrial production and uses. CABI, Wallingford

    Book  Google Scholar 

  6. Othmen I (2015) Étude des matériaux d’isolation compatibles avec la pierre de tuffeau : application à la réhabilitation du bâti ancien et/ou historique. Université de Nante, Thèse de doctorat

    Google Scholar 

  7. Colinart T, Glouannec P, Chauvelon P (2012) Influence of the setting process and the formulation on the drying of hemp concrete. Constr Build Mater 30:372–380. https://doi.org/10.1016/j.conbuildmat.2011.12.030

    Article  Google Scholar 

  8. Boutin M-P, Flamin C, Quinton S, Gosse G (2005) Analyse du cycle de vie de : Compounds thermoplastiques chargés fibres de chanvre et Mur en béton de chanvre banché sur ossature en bois. Villeneuve-d'Ascq, INRA Lille

    Google Scholar 

  9. Arnaud L, Gourlay E (2012) Experimental study of parameters influencing mechanical properties of hemp concretes. Constr Build Mater 28:50–56. https://doi.org/10.1016/j.conbuildmat.2011.07.052

    Article  Google Scholar 

  10. Tronet P, Lecompte T, Picandet V, Baley C (2016) Study of lime hemp concrete (LHC) – mix design, casting process and mechanical behaviour. Cem Concr Compos 67:60–72. https://doi.org/10.1016/j.cemconcomp.2015.12.004

    Article  Google Scholar 

  11. Glé P, Gourdon E, Arnaud L (2012) Modelling of the acoustical properties of hemp particles. Constr Build Mater 37:801–811. https://doi.org/10.1016/j.conbuildmat.2012.06.008

    Article  Google Scholar 

  12. Glé P, Gourdon E, Arnaud L (2011) Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl Acoust 72:249–259. https://doi.org/10.1016/j.apacoust.2010.11.003

    Article  Google Scholar 

  13. Benfratello S, Capitano C, Peri G et al (2013) Thermal and structural properties of a hemp–lime biocomposite. Constr Build Mater 48:745–754. https://doi.org/10.1016/j.conbuildmat.2013.07.096

    Article  Google Scholar 

  14. Elfordy S, Lucas F, Tancret F et al (2008) Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr Build Mater 22:2116–2123. https://doi.org/10.1016/j.conbuildmat.2007.07.016

    Article  Google Scholar 

  15. Mazhoud B, Collet F, Pretot S, Chamoin J (2016) Hygric and thermal properties of hemp-lime plasters. Build Environ 96:206–216. https://doi.org/10.1016/j.buildenv.2015.11.013

    Article  Google Scholar 

  16. Shea A, Lawrence M, Walker P (2012) Hygrothermal performance of an experimental hemp–lime building. Constr Build Mater 36:270–275. https://doi.org/10.1016/j.conbuildmat.2012.04.123

    Article  Google Scholar 

  17. Walker R, Pavía S (2014) Moisture transfer and thermal properties of hemp–lime concretes. Constr Build Mater 64:270–276. https://doi.org/10.1016/j.conbuildmat.2014.04.081

    Article  Google Scholar 

  18. Collet F, Pretot S (2014) Thermal conductivity of hemp concretes: variation with formulation, density and water content. Constr Build Mater 65:612–619. https://doi.org/10.1016/j.conbuildmat.2014.05.039

    Article  Google Scholar 

  19. Collet F, Pretot S (2012) Experimental investigation of moisture buffering capacity of sprayed hemp concrete. Constr Build Mater 36:58–65. https://doi.org/10.1016/j.conbuildmat.2012.04.139

    Article  Google Scholar 

  20. Walker R, Pavia S, Mitchell R (2014) Mechanical properties and durability of hemp-lime concretes. Constr Build Mater 61:340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065

    Article  Google Scholar 

  21. de Bruijn P, Johansson P (2013) Moisture fixation and thermal properties of lime–hemp concrete. Constr Build Mater 47:1235–1242. https://doi.org/10.1016/j.conbuildmat.2013.06.006

    Article  Google Scholar 

  22. Rahim M, Douzane O, Tran Le AD et al (2015) Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy and Buildings 88:91–99. https://doi.org/10.1016/j.enbuild.2014.11.043

    Article  Google Scholar 

  23. Tran Le AD, Maalouf C, Mai TH et al (2010) Transient hygrothermal behaviour of a hemp concrete building envelope. Energy and Buildings 42:1797–1806. https://doi.org/10.1016/j.enbuild.2010.05.016

    Article  Google Scholar 

  24. Belarbi R, Qin M, Aït-Mokhtar A, Nilsson L-O (2008) Experimental and theoretical investigation of non-isothermal transfer in hygroscopic building materials. Build Environ 43:2154–2162. https://doi.org/10.1016/j.buildenv.2007.12.014

    Article  Google Scholar 

  25. Qin M, Belarbi R, Aït-Mokhtar A, Nilsson L-O (2009) Coupled heat and moisture transfer in multi-layer building materials. Constr Build Mater 23:967–975. https://doi.org/10.1016/j.conbuildmat.2008.05.015

    Article  Google Scholar 

  26. Remki B, Abahri K, Tahlaiti M, Belarbi R (2012) Hygrothermal transfer in wood drying under the atmospheric pressure gradient. Int J Therm Sci 57:135–141. https://doi.org/10.1016/j.ijthermalsci.2012.02.005

    Article  Google Scholar 

  27. Ferroukhi MY, Abahri K, Belarbi R et al (2016) Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components. Heat Mass Transf 52:2257–2269. https://doi.org/10.1007/s00231-015-1740-y

    Article  Google Scholar 

  28. Ferroukhi MY, Abahri K, Belarbi R, Limam K (2017) Integration of a hygrothermal transfer model for envelope in a building energy simulation model: experimental validation of a HAM–BES co-simulation approach. Heat Mass Transf 53:1851–1861. https://doi.org/10.1007/s00231-016-1944-9

    Article  Google Scholar 

  29. Issaadi N, Nouviaire A, Belarbi R, Aït-Mokhtar A (2015) Moisture characterization of cementitious material properties: assessment of water vapor sorption isotherm and permeability variation with ages. Constr Build Mater 83:237–247. https://doi.org/10.1016/j.conbuildmat.2015.03.030

    Article  Google Scholar 

  30. European Standard ISO 12572 Building materials (1997) Determination of water vapor transmission properties (ISO/DIS 12572:1997) PrEN ISO 12572

  31. NFEN12664 (2001) Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique – Produits secs et humides de moyenne et basse résistance thermique

  32. NFEN12667 (2001) Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique – Produits de haute et moyenne résistance thermique

  33. Fagerlund G (1973) Determination of specific surface by the BET method. Mater Constr 6:239–245. https://doi.org/10.1007/BF02479039

    Article  Google Scholar 

  34. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem. https://doi.org/10.1351/pac198557040603

  35. Lawrence M, Jiang Y (2017) Porosity, pore size distribution, micro-structure. In: Amziane S, Collet F (eds) Bio-aggregates based building materials. Springer Netherlands, Dordrecht, pp 39–71

    Chapter  Google Scholar 

  36. Lawrence RM, Mays TJ, Rigby SP et al (2007) Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem Concr Res 37:1059–1069. https://doi.org/10.1016/j.cemconres.2007.04.011

    Article  Google Scholar 

  37. Peuhkuri R (2003) Moisture dynamics in building envelopes. Ph. D. thesis, Technical University of Denmark

  38. Furmaniak S, Terzyk AP, Gauden PA (2007) The general mechanism of water sorption on foodstuffs – importance of the multitemperature fitting of data and the hierarchy of models. J Food Eng 82:528–535. https://doi.org/10.1016/j.jfoodeng.2007.03.012

    Article  Google Scholar 

  39. Talukdar P, Olutmayin SO, Osanyintola OF, Simonson CJ (2007) An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: experimental facility and material property data. Int J Heat Mass Transf 50:4527–4539. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.026

    Article  Google Scholar 

  40. Kumaran MK (2006) A Thermal and moisture property database for common building and insulation materials. ASHRAE Trans 112:1–13

  41. Troppová E, Švehlík M, Tippner J, Wimmer R (2015) Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards. Mater Struct 48:4077–4083. https://doi.org/10.1617/s11527-014-0467-4

    Article  Google Scholar 

  42. Kari B, Perrin B, Foures JC (1992) Modélisation macroscopique des transferts de chaleur et d’humidité dans des matériaux du bâtiment. Les données nécessaires. Mater Struct 25:482–489. https://doi.org/10.1007/BF02472638

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Agency (ANR) through the Program Solar Buildings (project HYGROBAT N°ANR-10-HABISOL-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Belarbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennai, F., Issaadi, N., Abahri, K. et al. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution. Heat Mass Transfer 54, 1189–1197 (2018). https://doi.org/10.1007/s00231-017-2221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2221-2

Navigation