Skip to main content
Log in

Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone–water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone–methanol and acetone–ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone–methanol and acetone–ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone–water mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Akachi H (1994) Looped capillary heat pipe. Japanese Patent No. Hei697147

  2. Miyazaki Y, Akachi H (1996) Heat transfer characteristics of looped capillary heat pipe. In: Proceedings of the 5th international heat pipe symposium, Melbourne

  3. Vasiliev LL (2005) Heat pipes in modern heat exchangers. Appl Therm Eng 25(1):1–19. doi:10.1016/j.applthermaleng.2003.12.004

    Article  MathSciNet  Google Scholar 

  4. Khandekar S et al. (2004) Closed and open loop pulsating heat pipes. In: K-4, Proceedings of 13th international heat pipe conference, China Academy of Space Technology, Shanghai, vol 1

  5. Cotter TP (1965) Theory of heat pipes. Los Alamos Scientific Lab: Report No. LA-3246-MS

  6. Akachi H, Frantiaek P, Stulc F (1996) Pulsating heat pipes. In: Proceedings of the 5th international heat pipe symposium, Melbourne

  7. Yang H, Khandekar S, Groll M (2008) Operational limit of closed loop pulsating heat pipes. Appl Therm Eng 28(1):49–59. doi:10.1016/j.applthermaleng.2007.01.033

    Article  Google Scholar 

  8. Ayel V, Araneo L, Scalambra A, Mameli M, Romestant C, Piteau A, Marengo M, Filippeschi S, Bertin Y (2015) Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force. Int J Therm Sci 96:23–34. doi:10.1016/j.ijthermalsci.2015.04.010

    Article  Google Scholar 

  9. Burban G, Ayel V, Alexandre A, Lagonotte P, Bertin Y, Romestant C (2013) Experimental investigation of a pulsating heat pipe for hybrid vehicle applications. Appl Therm Eng 50(1):94–103. doi:10.1016/j.applthermaleng.2012.05.037

    Article  Google Scholar 

  10. Barua H, Ali M, Nuruzzaman M, Islam MQ, Feroz CM (2013) Effect of filling ratio on heat transfer characteristics and performance of a closed loop pulsating heat pipe. Procedia Eng 56:88–95. doi:10.1016/j.proeng.2013.03.093

    Article  Google Scholar 

  11. Clement J, Wang X (2013) Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Appl Therm Eng 50(1):268–274. doi:10.1016/j.applthermaleng.2012.06.017

    Article  Google Scholar 

  12. Han H, Cui X, Zhu Y, Sun S (2014) A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP). Int J Therm Sci 82:138–147. doi:10.1016/j.ijthermalsci.2014.04.003

    Article  Google Scholar 

  13. Karthikeyan VK, Ramachandran K, Pillai BC, Brusly Solomon A (2014) Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Exp Therm Fluid Sci 54:171–178. doi:10.1016/j.expthermflusci.2014.02.007

    Article  Google Scholar 

  14. Ji Y, Ma H, Su F, Wang G (2011) Particle size effect on heat transfer performance in an oscillating heat pipe. Exp Therm Fluid Sci 35(4):724–727. doi:10.1016/j.expthermflusci.2011.01.007

    Article  Google Scholar 

  15. Tanshen MR, Munkhbayar B, Nine MJ, Chung H, Jeong H (2013) Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. Int Commun Heat Mass Transf 48:93–98. doi:10.1016/j.icheatmasstransfer.2013.08.011

    Article  Google Scholar 

  16. Long ZQ, Zhang P (2013) Heat transfer characteristics of thermosyphon with N2–Ar binary mixture working fluid. Int J Heat Mass Transf 63:204–215. doi:10.1016/j.ijheatmasstransfer.2013.03.042

    Article  Google Scholar 

  17. Mameli M, Marengo M, Khandekar S (2014) Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe. Int J Therm Sci 75:140–152. doi:10.1016/j.ijthermalsci.2013.07.025

    Article  Google Scholar 

  18. Pachghare PR, Mahalle AM (2013) Effect of pure and binary fluids on closed loop pulsating heat pipe thermal performance. Procedia Eng 51:624–629. doi:10.1016/j.proeng.2013.01.088

    Article  Google Scholar 

  19. Zhu Y, Cui X, Han H, Sun S (2014) The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water–acetone mixtures. Int J Heat Mass Transf 77:834–842. doi:10.1016/j.ijheatmasstransfer.2014.05.042

    Article  Google Scholar 

  20. Han H, Cui X, Zhu Y, Xu T, Sui Y, Sun S (2016) Experimental study on a closed-loop pulsating heat pipe (CLPHP) charged with water-based binary zeotropes and the corresponding pure fluids. Energy 109:724–736. doi:10.1016/j.energy.2016.05.061

    Article  Google Scholar 

  21. Cui X, Qiu Z, Weng J, Li Z (2016) Heat transfer performance of closed loop pulsating heat pipes with methanol-based binary mixtures. Exp Therm Fluid Sci 76:253–263. doi:10.1016/j.expthermflusci.2016.04.005

    Article  Google Scholar 

  22. Shi S, Cui X, Han H, Weng J, Li Z (2016) A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures. Appl Therm Eng 102:1219–1227. doi:10.1016/j.applthermaleng.2016.04.014

    Article  Google Scholar 

  23. Patel VM, Gaurav MH (2017) Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe. Appl Therm Eng 110:1568–1577. doi:10.1016/j.applthermaleng.2016.09.017

    Article  Google Scholar 

  24. Shang F, Liu D, Xian H, Yang Y, Xiaoze D (2007) Flow and heat transfer characteristics of different forms of nanometer particles in oscillating heat pipe. J Chem Ind Eng China 58(9):2200–2204

    Google Scholar 

  25. Ziqiang Z, Youting W (2010) Chemical engineering. Chemical Industry Press, Beijing

    Google Scholar 

  26. Youbi-Idrissi M, Bonjour J, Meunier F (2005) Local shifts of the fluid composition in a simulated heat pump using R-407C. Appl Therm Eng 25(17–18):2827–2841. doi:10.1016/j.applthermaleng.2005.02.005

    Article  Google Scholar 

  27. Rajapaksha L (2007) Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems. Energy Convers Manag 48(2):539–545. doi:10.1016/j.enconman.2006.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China under Grant No. 51076104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Cui, X. & Zhu, Y. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures. Heat Mass Transfer 53, 1983–1994 (2017). https://doi.org/10.1007/s00231-016-1958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1958-3

Keywords

Navigation