Skip to main content
Log in

Understanding thermo-fluidic characteristics of a glass tube closed loop pulsating heat pipe: flow patterns and fluid oscillations

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental program has been carried out to understand the thermo-fluidic characterization of deionized (DI) water charged closed loop pulsating heat pipe (CLPHP) with flow patterns and fluid oscillations. The CLPHP is examined under vertical and horizontal heating modes with varying heat power. The flow patterns along with fluid oscillations are correlated with thermal performance of the CLPHP. Further, the CLPHP with copper oxide nanofluid study is carried out to understand operational behavior of the device. Fast Fourier frequencies, average frequency of the internal fluid temperature are investigated. Several important features of CLPHP operation are identified by the visual study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Area (m2)

CuO:

Copper oxide (-)

Cp :

Specific heat (J/kgK)

d:

Diameter (m)

f:

Bubble frequency (Hz)

h:

Heat transfer coefficient (W/m2K)

k:

Thermal conductivity (W/mK)

L:

Length (m)

N:

Nucleation site density (m−2)

n:

Number of parallel tubes (-)

Q:

Heat power (W)

q:

Heat flux (W/m2)

R:

Thermal resistance (K/W)

r:

Radius of tube (m)

T:

Temperature (°C)

\(\bar{T}\) :

Average temperature (°C)

a:

Active

b:

Bubble

c:

Condenser

cr:

Cross section

e:

Evaporator

i:

Inner

eff:

Effective

nf:

Nanofluid

o:

Outer

tot:

Total

References

  1. Akachi H (1996) US Patent, Patent Number 5490558

  2. Nishio S (2000) Attempts to apply micro heat transfer to thermal management. In: Proceedings of heat transfer and transport phenomena in microscale, Banff, pp 32–40

  3. Akachi H, Polasek F and Štulc P (1996) Pulsating heat pipes. In: Proceedings of 5th International heat pipe symposium, pp 208–217

  4. Groll M, Khandekar S (2002) Pulsating heat pipes: a challenge and still unsolved problem in heat pipe science. Appl Thermodyn 23:17–28

    Google Scholar 

  5. Charoensawan P, Khandekar S, Groll M, Terdtoon P (2003) Closed loop pulsating heat pipes—part A: parametric experimental investigations. Appl Therm Eng 23:2009–2020

    Article  Google Scholar 

  6. Rittidech S, Terdtoon P, Murakami M, Kamonpet P, Jompakdee W (2003) Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition. Appl Therm Eng 23:497–510

    Article  Google Scholar 

  7. Xu JL, Zhang XM (2005) Start up and steady thermal oscillation of a pulsating heat pipe. Heat Mass Transf 41:685–694

    Article  Google Scholar 

  8. Khandekar S, Dollinger N, Groll M (2003) Understanding operational regimes of closed loop pulsating heat pipes: an experimental study. Appl Therm Eng 23:707–819

    Article  Google Scholar 

  9. Yang H, Khandekar S, Groll M (2008) Operational limit of closed loop pulsating heat pipes. Appl Therm Eng 28:49–59

    Article  Google Scholar 

  10. Khandekar S, Charoensawan P, Groll M, Terdtoon P (2003) Closed loop pulsating heat pipes part B: visualization and semi-empirical modeling. Appl Therm Eng 23:2021–2033

    Article  Google Scholar 

  11. Zhang Y, Faghri A (2008) Advances and unsolved issues in pulsating heat pipes. Heat Transf Eng 29:20–44

    Article  Google Scholar 

  12. Khandekar S, Groll M (2004) An insight into thermo-hydraulic coupling in pulsating heat pipes. Int J Therm Sci 43:13–20

    Article  Google Scholar 

  13. Tong BY, Wong TN, Ooi K (2001) Closed-loop pulsating heat pipe. Appl Therm Eng 21:1845–1862

    Article  Google Scholar 

  14. Xu XL, Li YX, Wong TN (2005) High speed flow visualization of a closed loop pulsating heat pipe. Int J Heat Mass Transf 48:3338–3351

    Article  Google Scholar 

  15. Kim JS, Bui NH, Kim JW, Kim JH, Jung HS (2003) Flow visualization of oscillation characteristics of liquid and vapor flow in the oscillating capillary tube heat pipe. J Mech Sci Technol 17:1507–1519

    Google Scholar 

  16. Qu W, Ma TZ (2004) Steady state operational mechanism of looped PHP. J Eng Thermophys 25:323–325

    Google Scholar 

  17. Li J, Yan L (2008) Experimental research on heat transfer of pulsating heat pipe. J Therm Sci 17:181–185

    Article  Google Scholar 

  18. Liu S, Li J, Dong X, Chen H (2007) Experimental study of flow patterns and improved configurations for pulsating heat pipes. J Therm Sci 16:56–62

    Article  Google Scholar 

  19. Lin YH, Kang SW, Wu TY (2009) Fabrication of polydimethylsiloxane (PDMS) pulsating heat pipe. Appl Therm Eng 29:573–580

    Article  Google Scholar 

  20. Lin YH, Kang SW, Chen HL (2008) Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl Therm Eng 28:1312–1317

    Article  Google Scholar 

  21. Bhuwakietkumjohn N, Rittidech S (2010) Internal flow pattern on heat transfer characteristic of a closed loop oscillating heat pipe with check valves using ethanol and a silver nano-ethanol mixture. Exp Thermal Fluid Sci 34:1000–1007

    Article  Google Scholar 

  22. Ji Y, Ma H, Su F, Wang G (2011) Particle size effect on heat transfer performance in an oscillating heat pipe. Exp Therm Fluid Sci 35:724–727

    Article  Google Scholar 

  23. Li QM, Zou J, Yang Z, Duan YY, Wang BX (2011) Visualization of two-phase flows in nanofluid oscillating heat pipes. J Heat Transfer 133:052901

    Article  Google Scholar 

  24. Qu J, Wu H (2011) Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int J Therm Sci 50:1954–1962

    Article  Google Scholar 

  25. Karthikeyan VK, Ramachandran K, Pillai BC, Brusly Solomon A (2014) Effect of nanofluids on thermal performance of closed pulsating heat pipe. Exp Therm Fluid Sci. 54:171–178

    Article  Google Scholar 

  26. Theofanous TG, Tu JP, Dinh AT, Dinh TN (2002) The boiling crisis phenomenon Part I: nucleation and nucleate boiling heat transfer. Exp Therm Fluid Sci 26:775–792

    Article  Google Scholar 

  27. Mikic BB, Rohsenow WM (1969) A new correlation of pool-boiling data including the effect of heating surface characteristics. J Heat Transf 91:245–250

    Article  Google Scholar 

  28. Wen D, Ding Y (2005) Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluid Nanofluid 1:183–189

    Article  Google Scholar 

  29. Mameli M, Marengo M, Khandekar S (2014) Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe. Int J Therm Sci 75:140–152

    Article  Google Scholar 

  30. Khandekar S, Gautam Anant Prasad, Sharma PK (2009) Multiple quasi-steady states in a closed loop pulsating heat pipe. Int J Therm Sci 48:535–546

    Article  Google Scholar 

  31. Karthikeyan VK, Khandekar S, Pillai BC, Sharma Pavan K (2014) Infrared thermography of a pulsating heat pipe: flow regimes and multiple steady states. Appl Therm Eng 62:470–480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, V.K., Ramachandran, K., Pillai, B.C. et al. Understanding thermo-fluidic characteristics of a glass tube closed loop pulsating heat pipe: flow patterns and fluid oscillations. Heat Mass Transfer 51, 1669–1680 (2015). https://doi.org/10.1007/s00231-015-1525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1525-3

Keywords

Navigation