Skip to main content
Log in

Diffusion properties of aqueous slurries in evaporative spray drying of copper (II) chloride dihydrate

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study examines the evaporative heat transfer and diffusive mass transfer of a droplet of CuCl2 solution. The validation of a new predictive model involves comparisons with experimental data from previous studies of different fluids based on non-dimensional analysis. The study provides new insight about the effects of different concentrations of water on the CuCl2 slurry drying at low to moderate air temperatures. Predictive correlations of heat and mass transfer are developed for the aqueous solution, subject to various drying conditions. The analysis is performed for moist air in contact with a sprayed aqueous solution of copper (II) chloride dihydrate [CuCl2·(2H2O)]. Results are presented and discussed for the drying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a w :

Activity of water (−)

\(\overline{A}_{w}\) :

Partial molar surface area (m2)

B :

Spalding number

c i :

Molar concentration of ion (−)

C p :

Heat capacity (kJ/kg K)

d :

Diameter (m)

\({\mathfrak{D}}\) :

Mass diffusion coefficient (m2/s)

f s :

Enhancement factor (for ideal gas of water vapor) (−)

g :

Acceleration due to gravity (m/s2)

h :

External heat transfer coefficient (W/m2 K)

HR :

Hausner ratio (−)

ΔH v :

Latent heat of vaporization (kJ/kg)

i:

Contributing ion

k :

Coefficient of thermal conductivity (W/m K)

\(\dot{m}\) :

Flow rate (kg/s)

m :

Molecular weight (kg/mol)

m l :

Molality (mol/kg)

N :

Number of parameters

p :

Pressure (Pa)

p o :

Standard pressure (1,013.25 Pa)

\(\dot{q}\) :

Heat flux density (W/m2)

R :

Universal gas constant (kJ/kmol K); radius (m)

RH :

Relative humidity (−)

Re :

Reynolds number (−)

T :

Temperature (°C) or (K)

vf c :

Central void fraction (−)

vf w :

Wall void fraction (−)

V :

Volume, molecular volume (m3)

v :

Volume fraction

x :

Mass fraction (−)

X :

Dry basis moisture content (kg H2O/kg dry substance)

0:

Initial, first

1:

Reference temperature, first

2:

Desired temperature, second

32:

Sauter mean

a:

Air

at.air :

Atomizing air

aq:

Aqueous (in solution)

av:

Average

b:

Bulk gas, bulk fluid

g:

Gas

m:

Mass

p :

Particle

s:

Surface

sat:

Saturation conditions

sol:

Solution

tot:

Total

v:

Vapor

w:

Water

wb:

Wet bulb

wv:

Water vapor

θ :

Angle-direction

α :

Contribution to thermal conductivity of ion (−), thermal diffusivity (m2/s)

β :

Fitting parameters

λ :

Constant

μ :

Dynamic viscosity (Pa s)

υ:

Kinematic viscosity (m2/s)

ρ :

Density (kg/m3)

σ :

Surface tension (N/m)

ν :

Stoichiometric coefficient (−)

θ :

Angle, surface-liquid contact angle (°)

AECL:

Atomic Energy of Canada Limited

CERL:

Clean Energy Research Laboratory

DCC:

Copper chloride dihydrate

GHG:

Greenhouse gas

MSA:

Mean spherical approximation

PCB:

Printed circuit board

TC:

Thermochemical cycle

References

  1. Naterer GF, Suppiah S, Stolberg L, Lewis M, Wang Z, Daggupati V, Gabriel K, Dincer I, Rosen MA, Spekkens P, Lvov SN, Fowler M, Tremaine P, Mostaghimi J, Easton EB, Trevani L, Rizvi G, Ikeda BM, Kaye MH, Lu L, Pioro I, Smith WR, Secnik E, Jiang J, Avsec J (2010) Canada’s program on nuclear hydrogen production and the thermochemical Cu–Cl cycle. Int J Hydrogen Energy 35:10905–10926

    Google Scholar 

  2. Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles, part I: the methodology. Int J Hydrogen Energy 34:4115–4124

    Google Scholar 

  3. Naterer GF, Suppiah S, Lewis M, Gabriel K, Dincer I, Rosen MA, Fowler M, Rizvi G, Easton E, Ikeda B (2009) Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu–Cl cycle. Int J Hydrogen Energy 34:2901–2917

    Google Scholar 

  4. Suppiah S, Stolberg L, Boniface H, Tan G, McMahon S, York S, Zhang W (2009) Canadian nuclear hydrogen R&D programme: development of the medium-temperature Cu–Cl cycle and contributions to the high-temperature sulphur-iodine cycle. Fourth Information Exchange Meeting, Oakbrook, pp 14–16

    Google Scholar 

  5. Lewis MMA, Ferrandon MS, Tatterson DF, Mathias P (2009) Evaluation of alternative thermochemical cycles—part III further development of the Cu–Cl cycle. Int J Hydrogen Energy 34:4136–41455

    Google Scholar 

  6. Aghahosseini S, Dincer I, Naterer GF (2011) Integrated gasification and Cu–Cl cycle for trigeneration of hydrogen, steam and electricity. Int J Hydrogen Energy 36:2845–2854

    Google Scholar 

  7. Rosen MA, Naterer GF, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465

    Google Scholar 

  8. Litwin RZ, Pinkowski SM (2008) Solar power for thermochemical production of hydrogen. US Patent Publication US 2008/0256952; Oct 23

  9. Busscher N, Kahl J, Doesburg P, Mergardt G, Ploeger A (2010) Evaporation influences on the crystallization of an aqueous dihydrate cupric chloride solution with additives. J Colloid Interface Sci 344:556–562

    Google Scholar 

  10. Keskitalo T, Tanskanen J, Kuokkanen T (2007) Analysis of key patents of the regeneration of acidic cupric chloride etchant waste and tin stripping waste. Resour Conserv Recycl 49:217–243

    Google Scholar 

  11. Polyachenok OG, Dudkina EN, Branovitskaya NV, Polyachenok LD (2007) Formation of super disperse phase and its influence on equilibrium and thermodynamics of thermal dehydration. Thermochim Acta 467:44–53

    Google Scholar 

  12. Abdel Basir SM (2003) Recovery of cupric chloride from spent copper etchant solutions: a mechanistic study. Hydrometallurgy 69:135–143

    Google Scholar 

  13. Zamfirescu C, Dincer I, Naterer GF (2010) Thermophysical properties of copper compounds in copper–chlorine thermochemical water splitting cycles. Int J Hydrogen Energy 35:4839–4852

    Google Scholar 

  14. Mujumdar AS (2006) Handbook of industrial drying. CRC, Baco Raton

    Google Scholar 

  15. Daggupati VN, Naterer GF, Gabriel KS, Gravelsins RJ, Wang ZL (2011) Effects of atomization conditions and flow rates on spray drying for cupric chloride particle formation. Int J Hydrogen Energy 36:11353–11359

    Google Scholar 

  16. Ambike AA, Mahadik K, Paradkar A (2005) Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res 22:990–998

    Google Scholar 

  17. Ståhl K, Claesson M, Lilliehorn P, Lindén H, Bäckström K (2002) The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int J Pharm 233:227–237

    Google Scholar 

  18. Meenan P, Roberts K, Knight P, Yuregir K (1997) Influence of spray drying conditions on the particle properties of recrystallized burkeite (Na2CO3∙(Na2SO4)2). Powder Technol 90:125–130

    Google Scholar 

  19. Birchal VS, Passos ML, Wildhagen GRS, Mujumdar AS (2005) Effect of spray-dryer operating variables on the whole milk powder quality. Dry Technol 23:611–636

    Google Scholar 

  20. Jangam SV, Thorat BN (2010) Optimization of spray drying of ginger extract. Dry Technol 28:1426–1434

    Google Scholar 

  21. Xu X, Yao S, Han N, Shao B (2007) Measurement and influence factors of the flowability of microcapsules with high-content β-carotene. Chin J Chem Eng 15:579–585

    Google Scholar 

  22. Abdullah E, Geldart D (1999) The use of bulk density measurements as flowability indicators. Powder Technol 102:151–165

    Google Scholar 

  23. Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu–Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energy 36:11309–11320

    Google Scholar 

  24. Bharat V, Ray AK (1992) Evaporation and growth dynamics of a layered droplet. Int J Heat Mass Transf 35:2389–2401

    MATH  Google Scholar 

  25. Buyevich Y, Goldobin Y, Yasnikov GP (1994) Evolution of a particulate system governed by exchange with its environment. Int J Heat Mass Transf 37:3003–3014

    MATH  Google Scholar 

  26. Chen XD, Lin SXQ, Chen G (2002) On the ratio of heat to mass transfer coefficient for water evaporation and its impact upon drying modeling. Int J Heat Mass Transf 45:4369–4372

    MATH  Google Scholar 

  27. Saastamoinen JJ (2004) Heat exchange between two coupled moving beds by fluid flow. Int J Heat Mass Transf 47:1535–1547

    Google Scholar 

  28. Rasmussen K (1997) Calculation methods for the physical properties of air used in the calibration of microphones. Department of acoustic technology, Technical University of Denmark, Report PL-11b, Lyngby

  29. Gilliland ER, Baddour RF, Perkinson GP, Sladek KJ (1974) Diffusion on surfaces. I. Effect of concentration on the diffusivity of physically adsorbed gases. Ind Eng Chem Fundam 13:95–100

    Google Scholar 

  30. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  31. Incropera FP, Bergman TL, Lavine AS, DeWitt DP (2011) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  32. Laliberté M, Cooper WE (2004) Model for calculating the density of aqueous electrolyte solutions. J Chem Eng Data 49:1141–1151

    Google Scholar 

  33. Perry RH, Green DW (2008) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  34. Laliberté M (2007) Model for calculating the viscosity of aqueous solutions. J Chem Eng Data 52:321–335

    Google Scholar 

  35. Riedel L (1951) Die wärmeleitfähigkeit von wäßrigen Lösungen starker elektrolyte. Chem Ing Tech 23:59–64

    Google Scholar 

  36. Wang P, Anderko A (2008) Modeling thermal conductivity of concentrated and mixed-solvent electrolyte systems. Ind Eng Chem Res 47:5698–5709

    Google Scholar 

  37. Goldberg RN (1979) Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of lead, copper, manganese and uranium. J Phys Chem Ref Data 8:1005–1050

    Google Scholar 

  38. Laliberté M (2009) A model for calculating the heat capacity of aqueous solutions, with updated density and viscosity data. J Phys Chem Ref Data 54:1725–1760

    Google Scholar 

  39. De Nevers N (2012) Physical and chemical equilibrium for chemical engineers. Wiley, New York

    Google Scholar 

  40. Polyachenok O, Dudkina E, Polyachenok L (2009) Thermal stability and thermodynamics of copper (II) chloride dihydrate. J Chem Thermodyn 41:74–79

    Google Scholar 

  41. Meaux L (1995) MaxRace Software & Meaux Racing Heads/Engines, Abbeville Los-Angeles

  42. Babinsky E, Sojka PE (2002) Modeling drop size distributions. Prog Energy Combust Sci 28:303–329

    Google Scholar 

  43. Hede PD, Bach P, Jensen AD (2008) Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review. Chem Eng Sci 63:3821–3842

    Google Scholar 

  44. Mulhem B, Schulte G, Fritsching U (2006) Solid-liquid separation in suspension atomization. Chem Eng Sci 61:2582–2589

    Google Scholar 

  45. Thybo P, Hovgaard L, Andersen SK, Lindeløv JS (2008) Droplet size measurements for spray dryer scale-up. Pharm Dev Technol 13:93–104

    Google Scholar 

  46. Sazhin SS (2006) Advanced models of fuel droplet heating and evaporation. Prog Energy Combust Sci 32:162–214

    Google Scholar 

Download references

Acknowledgments

Financial support from Atomic Energy of Canada Limited and the Ontario Research Excellence Fund is gratefully acknowledged. The support of the members of the Clean Energy Research Laboratory (CERL) of University of Ontario Institute of Technology, Oshawa, ON, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Naterer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slowikowski, M., Naterer, G.F. & Odukoya, A. Diffusion properties of aqueous slurries in evaporative spray drying of copper (II) chloride dihydrate. Heat Mass Transfer 50, 1195–1210 (2014). https://doi.org/10.1007/s00231-014-1329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1329-x

Keywords

Navigation