Skip to main content
Log in

A predictive model based on a 3-D computational approach for film cooling effectiveness over a flat plate using GMDH-type neural networks

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A 3-D numerical solution is implemented for investigating incompressible turbulent flow and thermal fields of film cooling through a single row of inclined cylindrical holes over a flat plate model. The effects of parameters of interest on the film cooling performance have been simulated. The group method of data handling (GMDH)-type neural networks successfully employed for modeling and presenting a correlation for area-weighted average adiabatic film cooling effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Surface area

\(C_{\mu }\) :

The turbulence model constant

\(C_{2\varepsilon }\) :

The turbulence model constant

\(C_{1\varepsilon }\) :

The turbulence model constant

D :

Diameter of injection hole

DR :

Density ratio

I :

Momentum flux ratio

k :

Turbulence kinetic energy

L :

Length of injection hole

M :

Blowing ratio

PE :

Prediction error

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature

TE :

Training error

u :

Velocity

V :

Velocity

VR :

Velocity ratio

x :

Coordinate: streamwise (axial) direction

y :

Coordinate: vertical direction

\(y^{ + }\) :

Law of the wall coordinate

z :

Coordinate: lateral (spanwise) direction

\(\alpha\) :

Injection angle of hole

\(\delta_{ij}\) :

Kronecker delta

\(\varepsilon\) :

Turbulence dissipation rate

\(\eta\) :

Adiabatic film-cooling effectiveness

\(\mu\) :

Dynamic viscosity

v :

Kinematic viscosity

ρ :

Density

\(\sigma_{k}\) :

Prandtl number for turbulence kinetic energy

\(\sigma_{\varepsilon }\) :

Prandtl number for turbulence dissipation rate

\(\tau\) :

Shear stresses

aw :

Adiabatic wall

c :

Coolant

cl :

Centerline

m :

Main flow

i, j :

1,2 denote x–y space coordinate

t :

Turbulent

l :

Lateral direction

−:

Average value

′:

Fluctuating component

References

  1. Goldstein RJ (1971) Film cooling. Adv Heat Transf 7:321–379

    Article  Google Scholar 

  2. Sinha AK, Bogard DG, Crawford ME (1991) Film-cooling effectiveness downstream of a single row of holes with variable density ratio. Trans ASME J Turbomach 113:442–449

    Article  Google Scholar 

  3. Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47

    Article  Google Scholar 

  4. Bogard DG, Thole KA (2006) Gas turbine film cooling. J Propuls Power 22:249–270

    Article  Google Scholar 

  5. Yang C, Zhang J (2011) Influence of multi-hole arrangement on cooling film development. Chin J Aeronaut 25:182–188

    Article  Google Scholar 

  6. Sargison JE, Guo SM, Oldfield MLG, Lock GD, Rawlinson AJ (2002) A converging slot-hole film-cooling geometry-part 1: low-speed flat-plate heat transfer and loss. ASME J Turbomach 124:453–460

    Article  Google Scholar 

  7. Pedersen DR, Eckert ERG, Goldstein RJ (1997) Film-cooling with large density difference between the mainstream and the secondary fluid measured by heat mass transfer analogy. Trans ASME J Heat Transf 99:620–627

    Article  Google Scholar 

  8. Lutum V, Johnson BV (1999) Influence of the hole length to diameter ratio on film cooling with cylindrical holes. ASME J Turbomach 121:209–216

    Article  Google Scholar 

  9. Yuen CHN, Martinex-Botas RF (2003) Film cooling characteristics of a single round hole at various streamwise angle in a crossflow: part1 effectiveness. J Heat Mass Transf 46:221–235

    Article  Google Scholar 

  10. Saumweber C, Schulz A, Wittig S (2003) Freestream turbulence effects on film cooling with shaped holes. ASME J Turbomach 125:65–73

    Article  Google Scholar 

  11. Walters DK, Leylek JH (1997) A systematic computational methodology applied to a three-dimensional film-cooling flowfield. ASME J Turbomach 119:777–785

    Article  Google Scholar 

  12. Walters DK, Leylek JH (2000) A detailed analysis of film-cooling physics: part i- streamwise injection with cylindrical holes. ASME J Turbomach 122:102–112

    Article  Google Scholar 

  13. Leylek JH, McGovern KT (2000) A detailed analysis of film cooling physics: part ii-compound-angle injection with cylindrical holes. ASME J Turbomach 122:113–121

    Article  Google Scholar 

  14. Astrom KJ, Eykhoff P (1971) System identification, a survey. Automatica 7:123–162

    Article  MathSciNet  Google Scholar 

  15. Berenji HR (1996) Computational intelligence and soft computing for space applications. IEEE Aerosp Electron Syst Mag 11:8–10

    Article  Google Scholar 

  16. Liu GP, Kadirkamanathan V (1999) Multi-objective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms. IEE Proc Control Theory Appl 146:373–382

    Article  Google Scholar 

  17. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern 1:364–378

    Article  MathSciNet  Google Scholar 

  18. Farlow SJ (1984) Self-organizing method in modeling: GMDH-type algorithm. Dekker Inc, Marcel

    Google Scholar 

  19. Mueller JA, Lemke F (2000) Self-organizing data mining: an intelligent approach to extract knowledge from data. Pub Libri, Hamburg

    Google Scholar 

  20. Porto VW (1997) Evolutionary computation approaches to solving problems in neural computation. In: Back T, Fogel DB, Michalewicz Z (eds) Handbook of evolutionary computation. Institute of Physics Publishing and New York, Oxford University Press, Oxford

    Google Scholar 

  21. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423–1447

    Article  Google Scholar 

  22. Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh GR (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proc Inst Mech Eng Part B: J Eng Manuf 217:779–790

    Article  Google Scholar 

  23. Nariman-Zadeh N, Darvizeh A, Felezi ME, Gharababaei H (2002) Polynomial modeling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition. Modell Simul Mater Sci Eng 10:727–744

    Article  Google Scholar 

  24. Nariman-Zadeh N, Darvizeh A, Darvizeh M, Gharababaei H (2002) Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. J Mater Process Technol 128:80–87

    Article  Google Scholar 

  25. Jamali A, Nariman-zadeh N, Darvizeh A, Masoumi A, Hamrang S (2008) Multi-objecive evolutionary optimization of polynomial neural networks for modeling and prediction of explosive cutting process. J Eng Appl Artif Intell 22:676–687

    Article  Google Scholar 

  26. Amanifard N, Nariman-Zadeh N, Borji M, Khalkhali A, Habibdoust A (2008) Modelling and pareto optimization of heat transfer and fluid flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. J Energy Convers Manag 49:311–325

    Article  Google Scholar 

  27. Lee KD, Kim KY (2009) Optimization of fan-shaped holes for film cooling using a surrogate model, ASME Turbo Expo 2009: power for land, sea, and air (GT2009-59520) 505–514

  28. Lee KD, Kim KY (2010) Shape optimization of a Laidback fan-shaped film-cooling hole to enhance cooling performance. ASME Turbo Expo (GT2010-22398)

  29. Nguyen C, Rodriguez S, Zuniga H, Ho S, Kapat J (2009) Sensitivity analysis of flow conditions and geometric parameters on the film cooling effectiveness for a flat test plate, part 1: single row of cylindrical holes film cooling. ASME 2009 heat transfer summer conference collocated with the interPACK09 and 3rd Energy sustainability conferences (HT2009) 529–538

  30. Bell CM, Hamakawa H, Ligrani PM (2000) Film cooling from shaped holes. ASME J Heat Transf 122:224–232

    Article  Google Scholar 

  31. Brittingham RA, Leylek JH (2002) A detailed analysis of film cooling physics: part IV-compound-angle injection with shaped holes. ASME J Turbomach 122:133–145

    Article  Google Scholar 

  32. Johnson PL, Nguyen CQ, Ho SH, Kapat JS (2010) Sensitivity analysis of domain considerations for numerical simulations of film cooling. ASME Int Heat Transf Conf 5:285–300

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ali Jamali in the mechanical engineering department at the University of Guilan for his very valuable discussions in modeling using GMDH-type neural networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Amanifard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naghashnejad, M., Amanifard, N. & Deylami, H.M. A predictive model based on a 3-D computational approach for film cooling effectiveness over a flat plate using GMDH-type neural networks. Heat Mass Transfer 50, 139–149 (2014). https://doi.org/10.1007/s00231-013-1239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1239-3

Keywords

Navigation