Skip to main content
Log in

Nanofluids thermal behavior analysis using a new dispersion model along with single-phase

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A numerical study has been performed to analyze nanofluids convective heat transfer. Laminar α-Al2O3-water nanofluid flows in an entrance region of a horizontal circular tube with constant surface temperature. Numerical analysis has been carried out using two different single-phase models (homogenous and dispersion) and two-phase models (Eulerian–Lagrangian and mixture). A new model is developed to consider the nanoparticles dispersion. The transport equations for the tube with constant surface temperature were solved numerically using a control volume approach. The effects of nanoparticles volume fraction (0.5, 1 %) and Reynolds number (650 ≤ Re ≤ 2300) on nanofluid convective heat transfer coefficient were studied. The results are compared with the experimental data and it is shown that the homogenous single-phase model is underestimated and the mixture model is overestimated. Although the Eulerian–Lagrangian model gives a reasonable prediction for the thermal behavior of nanofluids, the dispersion single-phase model gives more accurate prediction despite its simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Bc :

Boltzmann constant (J K−1)

C:

Dispersion coefficient

Cc :

Cunningham correction factor

Cm :

Coefficient

Cp :

Specific heat (J kg−1 K−1)

Cs :

Coefficient

Ct :

Coefficient

dp :

Particle diameter (m)

dij :

Deformation tensor

D:

Tube diameter (m)

F:

Total force (N kg−1)

FB :

Brownian force (N kg−1)

FD :

Drag force (N kg−1)

FG :

Gravity force (N kg−1)

FL :

Saffman’s lift force (N kg−1)

FP :

Pressure gradient force (N kg−1)

FT :

Thermophoretic force (N kg−1)

FV :

Virtual mass force (N kg−1)

g:

Gravity acceleration (N m−2)

h:

Convective heat transfer coefficient (W m−2 K−1)

H:

Enthalpy (J kg−1)

k:

Thermal conductivity (W m−1 K−1)

Kn:

Knudsen number

Ks :

Coefficient

l:

Mean free path (m)

L:

Tube length (m)

mp :

Particle mass (kg)

Nu:

Nusselt number

p:

Pressure (Pa)

Pr:

Prandtl number

\(\dot{Q}\) :

Rate of total transferred energy (W)

r:

Radial coordinate

R:

Tube radius (m)

Re:

Reynolds number

S0 :

Spectral intensity basis (W kg−1)

Sp :

Source term

t:

Time (s)

T:

Temperature (K)

V:

Velocity (m s−1)

α :

Thermal diffusivity (m2 s−1)

ρ :

Density (kg m−3)

φ :

Particle volume fraction

ς i :

Unit-variance-independent Gaussian random number

μ :

Dynamic viscosity (kg m−1 s−1)

bf:

Base fluid

d:

Dispersed

eff:

Effective

i:

Inlet

m:

Mixture

nf:

Nanofluid

p:

Particle

w:

Wall

References

  1. Choi SUS, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles developments and applications of non-newtonian flows, Argonne National Lab., New York, pp 99–105

  2. Eastman J, Choi U, Li S, Soyez G, Thompson L, DiMelfi R (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum 312–314:629–634

    Article  Google Scholar 

  3. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transfer 125:151–155

    Article  Google Scholar 

  4. Dittus F, Boelter L (1930) Heat transfer for automobile radiators of the tubular type, Univ. of Calif. Publ Engng

  5. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  6. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067

    Article  Google Scholar 

  7. Zeinali Heris S, Etemad SG, Nasr Esfahany M (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33:529–535

    Article  Google Scholar 

  8. Maiga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct 35:543–557

    Article  Google Scholar 

  9. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  10. Heris SZ, Esfahany MN, Etemad G (2007) Numerical investigation of nanofluid laminar convective heat transfer through a circular tube. Numer Heat Transf A Appl 52:1043–1058

    Article  Google Scholar 

  11. Mokmeli A, Saffar-Avval M (2010) Prediction of nanofluid convective heat transfer using the dispersion model. Int J Therm Sci 49:471–478

    Article  Google Scholar 

  12. Mirmasoumi S, Behzadmehr A (2008) Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng 28:717–727

    Article  Google Scholar 

  13. Lotfi R, Saboohi Y, Rashidi A (2010) Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int Commun Heat Mass Transfer 37:74–78

    Article  Google Scholar 

  14. Akbari M, Galanis N, Behzadmehr A (2011) Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer. Int J Therm Sci 50:1343–1354

    Article  Google Scholar 

  15. Coleman HW, Steele WG (2009) Experimentation and uncertainty analysis for engineers. Wiley, New York

  16. Drew DA, Passman SL (1999) Theory of multicomponent fluids. Springer, New York

  17. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  18. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26:530–546

    Article  Google Scholar 

  19. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107

    Article  Google Scholar 

  20. Özerinç S, Yazıcıoğlu A, Kakaç S (2012) Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion. Int J Therm Sci 62:138–148

    Article  Google Scholar 

  21. Ounis H, Ahmadi G, McLaughlin JB (1991) Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interface Sci 143:266–277

    Article  Google Scholar 

  22. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  23. Li A, Ahmadi G (1992) Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol 16:209–226

    Article  Google Scholar 

  24. Talbot L, Cheng R, Schefer R, Willis D (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758

    Article  Google Scholar 

  25. Ranz WE, Marshall WR Jr (1952) Evaporation from Drops. Chem Eng Prog I 48:141–146

    Google Scholar 

  26. Manninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. Technical Research Centre of Finland, VTT Publications, Espoo, pp 16–48

  27. Schiller L, Naumann A (1935) A drag coefficient correlation. Vdi Zeitung 77:318–320

    Google Scholar 

  28. Hausen H (1943) Darstellung des Warmeuberganges in Rohren durch verallgemeinerte Potenzbeziehungen. Z VDI Beih Verfahrenstech 4:91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojarrad, M.S., Keshavarz, A. & Shokouhi, A. Nanofluids thermal behavior analysis using a new dispersion model along with single-phase. Heat Mass Transfer 49, 1333–1343 (2013). https://doi.org/10.1007/s00231-013-1182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1182-3

Keywords

Navigation