Skip to main content
Log in

Flow resistance and heat transfer characteristics in micro-cylinders-group

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

De-ionized water flows through in-line and staggered arrays micro-cylinders-group plates with different distances among micro-cylinders, and the resistance characteristic and the Nusselt numbers of micro plates are experimentally obtained. The investigations show that the distances among cylinders (S values) have slight influence on flow resistance and the experimental Nusselt number and they are far less than predictions of classical correlations at extremely low Reynolds number due to the appearance of the sluggish regions in micro cylinders-group plate. With the increase of Reynolds number, the influence of the S values on flow resistance becomes more apparent and the flow resistance and the experimental Nusselt number of micro-cylinders-group rapidly increases due to the decrease of sluggish regions in the micro-cylinders-group plate and the weakness of the variation of the thermophysical properties with temperature and the endwall effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Whole heat transfer area, m2

c :

Constant

C g :

Tip clearance, m

c p :

Specific heat, J kg−1 K−1

d :

Hydraulic diameter of cylinder, m

G :

Mass flux, kg s−1

h :

Convective heat transfer coefficient, W m−2 K−1

H :

Height of cylinder, m

I :

Electric current, A

K :

Thermal conductivity coefficient, W m−1 K−1

L :

Length of test section plate, m

m f :

Fin parameter

n :

Number of cylinders

Nu :

Nusselt number

P :

Heating power, W

ΔP :

Pressure drop between inlet and outlet of micro-cylinders group plate, Pa

Pr :

Prandtl number

q :

Heat flux, W m−2

Q :

Heat quantity, W

Re :

Reynolds number

S :

Distance among cylinders centre, m

S 1 :

Distance between bottom and upper layer of sidewall of test section, m

S 2 :

Distance between under layer and upper layer of sidewall of test section, m

S D :

Inclined distance of based plate, m

S L :

Longitudinal distance of cylinder, m

S T :

Transverse distance of cylinder, m

t :

Temperature of working fluid, °C

T :

Wall temperature, °C

T 1 :

Average temperature of upper layer of test section sidewall, °C

T 2 :

Average temperature of under layer of test section sidewall °C

u :

Flow velocity, m s−1

V :

Volume flow rate, m3 s−1

U :

Electric voltage, V

W :

Width of test section plate, m

μ :

Dynamic viscosity, kg m−1 s−1

ρ :

Density, kg m−3

η f :

Fin efficiency

f :

Fluid

i :

Inlet of test section

loss :

Heat loss

Max :

Maximum

o :

Outlet of test section

w :

Wall

References

  1. Hitt DL, Zakrzwski CM, Thomas MA (2001) MEMS-based satellite micro propulsion via catalyzed hydrogen peroxide decomposition. Smart Mater Struct 10:1163–1175

    Article  Google Scholar 

  2. Knight RW, Hall DJ, Goodling JS, Jaeger RC (1992) Heat sink optimization with application to microchannel. IEEE Trans Comp Hybrids Manufact Technol 15:832–842

    Google Scholar 

  3. Kandlikar S, Grande W (2004) Evaluation of single-phase flow in micro channels for high heat flux chip cooling-thermo hydraulic performance enhancement and fabrication technology. J Heat Transfer 25(8):5–16

    Google Scholar 

  4. Kosar A, Mishra C, Peles Y (2005) Laminar flow across a bank of flow aspect ratio micro pin fins. ASME J Fluids Eng 127(3):419–430

    Article  Google Scholar 

  5. Honda H, Takamastu H, Wei JJ (2002) Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness. J Heat Transf 124:383–390

    Article  Google Scholar 

  6. Koşar A, Peles Y (2007) Boiling heat transfer in a hydrofoil-based micro pin fin heat sink. Int J Heat Mass Transf 50:1018–1034

    Article  Google Scholar 

  7. Lie YM, Ke JH, Chang WR, Cheng TC, Lin TF (2007) Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-finned silicon chip. Int J Heat Mass Transf 50(19–20):3862–3876

    Google Scholar 

  8. Kosar A, Peles Y (2006) Convective flow of refrigerant (R-123) across a bank of micro pin fins. Int J Heat Mass Transf 49:3142–3155

    Article  Google Scholar 

  9. Qu WL, Siu-Ho A (2009) Measurement and prediction of pressure drop in a two-phase micro-in-fin heat sink. Int J Heat Mass Transf 52:5173–5184

    Article  Google Scholar 

  10. Kosar A, Peles Y (2006) Thermal-hydraulic performance of MEMS-based pin fin heat sink. J Heat Transf 128:121–131

    Article  Google Scholar 

  11. Mizunuma H, Behnia M, Nakayama W (1997) Heat transfer from micro-finned surfaces to flow of fluorinert coolant in reduced-size channels. IEEE Trans Compon Packag Manuf Technol A 20(2):139–145

    Google Scholar 

  12. Marques C, Kelly KW (2004) Fabrication and performance of a pin fin micro heat exchanger. ASME J Heat Transf 126:434–444

    Article  Google Scholar 

  13. Peles Y, Kosar A, Mishra C, Kuo CJ, Schneider B (2005) Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transf 48:3615–3627

    Article  MATH  Google Scholar 

  14. Galvis E, Jubran BA, Xi F, Behdinan K, Fawaz Z (2008) Numerical modelling of pin–fin micro heat exchangers. Heat Mass Transf 44:659–666

    Article  Google Scholar 

  15. Moores KA, Joshi YK (2003) Effect of tip clearance on the thermal and hydrodynamic performance of a shrouded pin fin array. J Heat Transf 125:999–1006

    Article  Google Scholar 

  16. Ohadi M, Qi J, Lawler J (2005) Ultra-thin film evaporation(UTF)-application to emerging technologies in cooling of microelectronics. Microscale Heat Transf 193:321–338

    Google Scholar 

  17. Naphon P, Sookkasem A (2007) Investigation on heat transfer characteristics of tapered cylinder pin fin heat sinks. Energy Convers Manage 48:2671–2679

    Article  Google Scholar 

  18. Diez LI, Espatolero S, Cortes C, Campo A (2010) Thermal analysis of rough micro-fins of variable cross-section by the power series method. Int J Thermal Sci 49:23–35

    Article  Google Scholar 

  19. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1:3–17

    Article  Google Scholar 

  20. Gaddis ES, Gnielski V (1985) Pressure drop in horizontal cross flow across tube bundles. Int Chem Eng 25(1):1–15

    Google Scholar 

  21. Zukauskas AA (1972) Heat transfer from tubes in cross flow advances in heat transfer, vol 8. Academic Press, New York, pp 93–160

  22. Chye MK, Hsing YC, Shih TI-P, Natarajan V (1999) Heat transfer contributions of pins and endwall in pin-fin arrays: effects of thermal boundary condition modelling. ASME J Turbomach 121:257–263

    Article  Google Scholar 

  23. Li J, Peterson GP, Cheng P (2004) Three-dimensional analysis of the heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf 47:4215–4231

    Article  MATH  Google Scholar 

  24. Liu ZG, Zhang CW, Guan N (2011) Experimental investigation on resistance characteristics in micro/mini cylinder group. Exp Thermal Fluid Sci 35:226–233

    Google Scholar 

  25. Ravigururajanm TS, Cuta J, McDonald CE, Drost MK (1996) Single-phase flow thermal performance characteristics of a parallel micro-channel heat exchanger. Natl Heat Transf Conf ASME HTD-329 7:157–166

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the National Natural Science Foundation (Grant: 51176105), Shandong Province Young and Middle-Aged Scientists Awards Fund (Grant: Y2009CL017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wang, Z., Zhang, C. et al. Flow resistance and heat transfer characteristics in micro-cylinders-group. Heat Mass Transfer 49, 733–744 (2013). https://doi.org/10.1007/s00231-013-1115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1115-1

Keywords

Navigation