Skip to main content
Log in

Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

An Erratum to this article was published on 16 April 2015

Abstract

In this study, experiments were performed by six different volume fractions of Al2O3 nanoparticles in distilled water. Then, actual nanofluid Nusslet number compared by Adaptive neuro fuzzy inference system (ANFIS) predicted number in square cross-section duct in laminar flow under uniform heat flux condition. Statistical values, which quantify the degree of agreement between experimental observations and numerically calculated values, were found greater than 0.99 for all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ARE:

Average relative error

AARE:

Absolute average relative error

MSE:

Mean square error

RMSE:

Root Mean square error

ANFIS:

Adaptive neuro fuzzy inference system

FIS:

Fuzzy inference system

CHF:

Critical heat flux

X, Y, and Z:

Linguistic variables

ai, bi, and ci:

Parameter set

μA(x), and μB(x):

Membership function

A:

Surface area of the square cross-section duct (m2)

Cp:

Specific heat (kJ kg−1 K−1)

Dh :

Hydraulic diameter (m)

\( \overline{\text{h}}_{\text{nf}} (\exp ) \) :

Experimental average heat transfer coefficient of Nanofluid (W m−2 K−1)

K:

Thermal conductivity (W m−1 K−1)

L:

Duct length (m)

Nu (exp):

Experimental average Nusselt number of Nanofluid

Nu (th):

Nanofluid Nusselt number calculated from Seider–Tate equation

Pe:

Peclet number

Pr:

Prandtl number

Q:

Heat flux (W)

Re:

Reynolds number

Tb :

Bulk temperature (K)

Tw :

Duct wall temperature (K)

\( \overline{\text{U}} \) :

Average fluid velocity (m s−1)

μ:

Viscosity (Pa s)

μwnf :

Nanofluid viscosity at duct wall temperature (Pa s)

\( \phi \) :

Nanoparticle volume fraction (%)

ρ:

Density (kg m−3)

nf:

Nanofluid

s:

Solid nanoparticles

w:

Water

References

  1. Salehi H, Zeinali Heris S, Noie SH (2011) Experimental study of two-Phase closed thermosyphon with nanofluid and magnetic field effect. J Enhanc Heat Transf 18(3):261–269

    Article  Google Scholar 

  2. Zeinali Heris S, Nasr Esfahany M, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28(2):203–210

    Article  Google Scholar 

  3. Zeinali Heris S, Nasr Esfahany M, Etemad SGh (2006) Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube. J Enhanc Heat Transf 13(4):279–289

    Article  Google Scholar 

  4. Nassan TH, Heris SZ, Noie SH (2010) A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct. Int Commun Heat Mass Transf 37:924–928

    Article  Google Scholar 

  5. Fotukian SM, Nasr Esfahany M (2010) Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf 37:214–219

    Article  Google Scholar 

  6. Ghasemi B, Aminossadati SM (2009) Natural convection heat transfer in an inclined enclosure filled with a water–CuO nanofluid, numerical heat transfer. Part A Appl 55(8):807–823

    Article  Google Scholar 

  7. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  8. Williams WC, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130(4):42412–42419

    Article  Google Scholar 

  9. Ahn HS, Kim H, Jo H, Kang S, Chang W, Kim MH (2010) Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface. Int J Multiph Flow 36:375–384

    Article  Google Scholar 

  10. Kim SJ, McKrell T, Buongiorno J, Hu LW (2009) Experimental study of flow critical heat flux in alumina–water, zinc-oxide–water, and diamond–water nanofluids. J Heat Transf 131:043204-1

    Google Scholar 

  11. Salehi H, Zeinali Heris S, Koolivand Salooki M, Noei SH (2011) Designing a neural network for closed thermosyphon with nanofluid using a generic algorithm. Braz J Chem Eng 28:157–168

    Article  Google Scholar 

  12. Jang JSR (1993) ANFIS: adaptive network-based fuzzy inference system. IEEE Trans Syst Man Cybern Part C 23:665e85

    Google Scholar 

  13. Babuska R (1998) Fuzzy modeling for control. Kluwer, Boston

    Book  Google Scholar 

  14. Han Y, Zeng W, Zhao Y, Qi Y, Sun Y (2011) An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process. Comput Mater Sci 50:2273–2279

    Article  Google Scholar 

  15. Wang YM, Taha MS, Elhag TMS (2008) An adaptive neuro-fuzzy inference system for bridge risk assessment. Expert Syst Appl 34(3):3099–3106

    Article  Google Scholar 

  16. Meharrar A, Tioursi M, Hatti M, Boudghène Stambouli A (2011) A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system. Expert Syst Appl 38:7659–7664

    Article  Google Scholar 

  17. Rahmanian B, Pakizeh M, Esfandyari M, Maskooki A (2011) A fuzzy inference system for modeling of zinc removal using micellar-enhanced ultra filtration. Sep Sci Technol 46:1–11

    Article  Google Scholar 

  18. Aliyari Shoorehdeli M, Teshnehlab M, KhakiSedigh A (2009) Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Sets Syst 160:922–948

    Article  MATH  Google Scholar 

  19. Maxwell JC (1881) A treatise on electricity and magnetism, vol 1. Clarendon Press, Oxford

    Google Scholar 

  20. Seider EN, Tate GE (1936) Heat transfer and pressure drop of liquid in tubes. Ind Eng Chem 28(12):1429–1435

    Article  Google Scholar 

  21. Drew DA, Passman SL (1999) Theory of multi component fluids, 1st edn. Springer, Berlin

    Google Scholar 

  22. Einstein A (1956) Investigation on theory of Brownian motion, 1st edn. Dover, New York

    Google Scholar 

  23. Yang HD (1962) Statistical treatment of experimental data. McGrow-Hill, New york

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Salehi.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00231-015-1566-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi, H., Zeinali-Heris, S., Esfandyari, M. et al. Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid. Heat Mass Transfer 49, 575–583 (2013). https://doi.org/10.1007/s00231-012-1104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1104-9

Keywords

Navigation