Skip to main content
Log in

Effect of ionic additive on pool boiling critical heat flux of titania/water nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

TiO2/water nanofluids were prepared and tested to investigate the effects of an ionic additive (i.e., nitric acid in this study) on the critical heat flux (CHF) behavior in pool boiling. Experimental results showed that the ionic additive improved the dispersion stability but reduced the CHF increase in the nanofluid. The additive affected the self-assembled nanoparticle structures formed on the heater surfaces by creating a more uniform and smoother structure, thus diminishing the CHF enhancement in nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83:3374–3376

    Article  Google Scholar 

  2. Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf 47:407–411

    Article  Google Scholar 

  3. Zuber N (1959) Hydrodynamic aspects of boiling heat transferPhysics and Mathematics AEC

  4. Milanova D, Kumar R (2005) Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett 87:244107

    Article  Google Scholar 

  5. Kim H, Kim J, Kim MH (2006) Experimental study on CHF characteristics of water-TiO2 nano-fluids. Nuclear Eng Tech 38:61–68

    Google Scholar 

  6. Kim SJ, Bang IC, Buongiorno J, Hu LW (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 50:4105–4116

    Article  Google Scholar 

  7. Coursey JS, Kim J (2008) Nanofluid boiling: the effect of surface wettability. Int J Heat Fluid Flow 29:1577–1585

    Article  Google Scholar 

  8. Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf 53:972–981

    Article  Google Scholar 

  9. Kwark SM, Moreno G, Kumar R, Moon H, You SM (2010) Nanocoating characterization in pool boiling heat transfer of pure water. Int J Heat Mass Transf 53:4579–4587

    Article  Google Scholar 

  10. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  Google Scholar 

  11. Kim H, Ahn HS, Kim MH (2010) On the mechanism of pool boiling critical heat flux enhancement in nanofluids. J Heat Transf 132:061501

    Article  Google Scholar 

  12. Wang C-C, Zhang Z, Ying JY (1997) Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct Mater 9:583–586

    Article  Google Scholar 

  13. Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Tech 160:121–126

    Article  Google Scholar 

  14. Holman JP (2001) Experimental methods for engineers, 7th edn. McGraw-Hill, New York

    Google Scholar 

  15. Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jap 14:527–532

    Article  MathSciNet  Google Scholar 

  16. Li D (2004) Electrokinetics in microfluidics. Elsevier, London

    Google Scholar 

  17. Hunter RJ (1987) Foundations of colloid science, 1st edn. Clarendon Press, Oxford

    Google Scholar 

  18. Haramura Y, Katto Y (1983) A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int J Heat Mass Transf 26:389–399

    Article  MATH  Google Scholar 

  19. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862

    Article  Google Scholar 

  20. Wen DS, Ding YL (2005) Experimental investigation into the pool boiling heat transfer of aqueous based gamma-alumina nanofluids. J Nanopart Res 7:265–274

    Article  Google Scholar 

  21. Jung JY, Kim YW, Yoo JY, Koo J, Kang YT (2010) Forces acting on a single particle in an evaporating sessile droplet on a hydrophilic surface. Anal Chem 82:784–788

    Article  Google Scholar 

  22. Jung JY, Yoo JY (2009) Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int J Heat Mass Transf 52:525–528

    Article  Google Scholar 

  23. White SB, Shih AJ, Pipe KP (2010) Effects of nanoparticle layering on nanofluid and base fluid pool boiling heat transfer from a horizontal surface under atmospheric pressure. J Appl Phys 107:114302

    Article  Google Scholar 

  24. Kim H, Kim M (2009) Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids. Heat Mass Transf 45:991–998

    Article  Google Scholar 

  25. Jung JY, Kwak HY (2006) Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness. Int J Heat Mass Transf 49:4543–4551

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Kyung Hee University in 2010. (KHU-20100605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungdae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, JY., Kim, H. & Kim, M.H. Effect of ionic additive on pool boiling critical heat flux of titania/water nanofluids. Heat Mass Transfer 49, 1–10 (2013). https://doi.org/10.1007/s00231-012-1055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1055-1

Keywords

Navigation