Skip to main content
Log in

The characteristics of gas–solid flow and wall heat transfer in a fluidized bed reactor

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Numerical study using computational fluid dynamics has been carried out to investigate the heat transfer characteristics of a laboratory fluidized bed reactor. The fluidized bed reactor of vTI (Johann Heinrich von Thünen-Institute)-Institute of Wood Technology and Wood Biology is modeled. For the simulation of multiphase flow and thermal fields, an Eulerian–Eulerian approach is applied. The flow and thermal characteristics of the reactor are fully investigated for the wide range of superficial gas velocities and two different particle diameters. In particular, the contributions of the gas bubble and emulsion phase flows on the wall heat transfer are scrutinized. From the predicted results, it is fully elucidated that particular near-wall bubble motions mainly govern the wall heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Local wall area (m2)

A wall :

Total wall area (m2)

C p :

Specific heat capacity at constant pressure (J kg−1 K−1)

d p :

Particle diameter (m)

F :

Coefficient for interphase drag force (kg m−3 s−1)

g :

Gravitational acceleration (m s−2)

H* :

Time-averaged bed expansion rate

h :

Time-averaged wall heat transfer coefficient (W m−2 K−1)

h instant :

Instantaneous wall heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (J m−1 K−1 s−1)

p :

Pressure (Pa)

T :

Temperature (K)

T bulk :

Bulk mean temperature (K)

T wall :

Wall temperature (K)

t :

Time (s)

q :

Conductive heat flux (J m−2 s−1)

R :

Rate of production of chemical species (kg m−3 s−1)

RM :

Rate of mass transfer between phases (kg m−3 s−1)

S sj :

Solid phase stress tensor (Pa)

v :

Velocity (m s−1)

v0 :

Superficial gas velocity (m s−1)

vmf :

Gas velocity at minimum fluidization (m s−1)

γ:

Gas–solid heat transfer coefficient (J m−3 K−1 s−1)

ε:

Void fraction

Θ sj :

Granular temperature (m2 s−2)

ρ :

Density (kg m−3)

τ g :

Deviatoric stress tensor for gas phase (Pa)

References

  1. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials-a review. Bioresour Technol 68:71–77

    Article  Google Scholar 

  2. Brammer JG, Lauer M, Bridgwater AV (2006) Opportunities for biomass-derived “bio-oil” in European heat and power markets. Energy Policy 34:2871–2880

    Article  Google Scholar 

  3. Dong L, Liu H, Riffat S (2006) Development of small-scale and micro-scale biomass-fuelled CHP systems—a literature review. Appl Therm Eng 29:2119–2126

    Article  Google Scholar 

  4. Wu C, Yin X, Ma L, Zhou Z, Chen H (2009) Operation characteristics of a 1.2-MW biomass gasification and power generation plant. Biotechnol Adv 27:588–592

    Article  Google Scholar 

  5. Dahl O, Nurmesniemi H, Poykio R, Watkins G (2009) Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Process Technol 90:871–878

    Article  Google Scholar 

  6. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis process for biomass. Renew Sustain Energy Rev 4:1–73

    Article  Google Scholar 

  7. Park H, Park Y, Kim J (2008) Influence of reaction conditions and the char separation system on the production of bio-oil from radiate pine sawdust by fast pyrolysis. Fuel Process Technol 89:797–802

    Article  Google Scholar 

  8. Zheng J (2008) Pyrolysis oil from fast pyrolysis of maize stalk. J Anal Appl Pyrolysis 83:205–212

    Article  Google Scholar 

  9. Van de Velden M, Baeyens J, Boukis I (2008) Modeling CFB biomass pyrolysis reactors. Biomass Bioenergy 32:128–139

    Article  Google Scholar 

  10. Pence DV, Beasley DE, Figliola RS (1994) Heat transfer and surface renewal dynamics in gas-fluidized beds. Trans AMSE J Heat Transfer 116:929–937

    Article  Google Scholar 

  11. Kurosaki Y, Satoh I, Ishize T (1995) Mechanisms of heat transfer enhancement of gas-solid fluidized bed: estimation of direct contact heat exchanger from heat transfer surface to fluidized particles using an optical visualization technique. Trans AMSE J Heat Transfer 117:104–112

    Article  Google Scholar 

  12. Karamavruc AI, Clark NN, Ganser G (1996) Modeling of the transient heat transfer across a heat transfer tube in a bubbling fluidized bed. Trans AMSE J Heat Transfer 118:258–261

    Article  Google Scholar 

  13. Fridman J, Koundakjian P, Naylor D, Rosero D (2006) Heat transfer to small horizontal cylinders immersed in a fluidized bed. Trans AMSE J Heat Transfer 128:984–989

    Article  Google Scholar 

  14. Chen JC (2003) Surface contact-its significance for multiphase heat transfer: diverse examples. Trans AMSE J Heat Transfer 125:549–566

    Article  Google Scholar 

  15. Syamlal M, Gidaspow M (1985) Hydrodynamics of fluidization: prediction of wall to bed heat transfer coefficients. AIChE J 31:127–134

    Article  Google Scholar 

  16. Kuipers JAM, Prins W, van Swaaij WPM (1992) Numerical calculation of wall-to-bed heat transfer coefficients in gas-fluidized beds. AIChE J 38:1079–1091

    Article  Google Scholar 

  17. Schmit A, Renz U (2005) Numerical prediction of heat transfer between a bubbling fluidized bed and an immersed tube bundle. Heat Mass Transfer 41:257–270

    Google Scholar 

  18. Patail DJ, Smit J, van Sint Annaland M, Kuipers JAM (2006) Wall-to-bed heat transfer in gas-solid bubbling fluidized beds. AIChE J 52:58–74

    Article  Google Scholar 

  19. Syamlal M, Rogers W, O’Brien TJ (1993) MFIX documentation theory guide; Technical note, DOE/METC-94/1004, NTIS/DE94000087, US Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center Morgantown, WV, National Technical Information Service, Springfield

  20. Wachem BGM, Schouten JC, Bleek CM, Krishna R, Sinclair JL (2001) Comparative analysis of CFD models of dense gas-solid systems. AIChE J 47:1035–1051

    Article  Google Scholar 

  21. Syamlal M, O’Brien TJ (1998) Simulation of granular layer inversion in liquid fluidized beds. Int J Multiphase Flow 14:473–481

    Article  Google Scholar 

  22. Garside J, Al-Dibouni MR (1977) Velocity-voidage relationship for fluidization and sedimentation. I&EC Proc Des Dev 16:206–214

    Article  Google Scholar 

  23. Syamlal M (1987) The particle–particle drag term in a multiparticle model of fluidization, DOE/MC/21353-2373, NTIS/DE87006500. National Technical Information Service, Springfield

    Google Scholar 

  24. Lebowitz JL (1964) Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres. Phys Rev A133:895–899

    Article  MathSciNet  Google Scholar 

  25. Syamlal M (1987) A review of granular stress constitutive relations, DOE/MC/21353-2372, NTIS/DE87006499. National Technical Information Service, Springfield

    Google Scholar 

  26. Klaubert H (2002) Untersuchungen zur Wirbelschichtpyrolyse von Holzpartikeln. Diplomarbeit im Studiengan Verfahrenstechnik, University of Applied Science, Hamburg

    Google Scholar 

  27. Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd ed. Butterworth-Heinemann

  28. Herzog N, Schreiber M, Egbers C, Krautz HJ (2011) A comparative study of different CFD-codes for numerical simulation of gas-solid fluidized bed hydrodynamics. Comput Chem Eng (in press)

  29. Taghipour F, Ellis N, Wong C (2005) Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chem Eng Sci 60:6857–6867

    Article  Google Scholar 

  30. Ozkaynak TF, Chen JC (1980) Emulsion phase residence time and its use in heat transfer models in fluidized beds. AIChE J 26:544–550

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Alexander von Humboldt foundation and the authors thank all the collaborative members of Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Seok Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.S., Meier, D. The characteristics of gas–solid flow and wall heat transfer in a fluidized bed reactor. Heat Mass Transfer 48, 1513–1524 (2012). https://doi.org/10.1007/s00231-012-0997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-0997-7

Keywords

Navigation