Skip to main content

Advertisement

Log in

Interfacial thermal contact resistance between aluminum nitride and copper at cryogenic temperature

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the interfacial thermal contact resistance (ITCR) between aluminum nitride and copper. The ITCR was measured based on one-dimension steady-state heat conduction over a temperature range of 90–210 K and over a contact pressure range of 0.3–1.0 MPa. Our results show that the ITCR between aluminum nitride and copper decreases with increasing contact pressure, and increasing interfacial temperature. An ITCR model, which the influence of the surface layer on the ITCR is considered, is presented for prediction the ITCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C :

Specific heat per unit volume (kJ/kg m3)

F :

Force (N)

k :

Thermal conductivity (W/m K)

k b :

Boltzmann constant (1.3805 × 10−23 J/K)

q :

Heat flux (W/m2)

R :

Thermal contact resistance (K m2/W)

T :

Temperature (K)

v :

Average sound velocity (m/s)

α :

Transmission coefficient

δ:

Thickness of surface layer (m)

ΔT :

Temperature difference at the interface (K)

\( \hbar \) :

Planck’s constant divided by 2π(1.054496 × 10−34 J s)

λ :

Mean free path (m)

ω d :

Phonon Debye frequency (rad/s)

c :

Contact

i :

Interface

j :

Material number (j = 1, 2)

1:

Material 1

2:

Material 2

References

  1. Mariani M, Ariante M, Matrone A et al (2002) Cryocooler cooled HTS current leads for a 1 MJ/1 MW-class SMES system. IEEE Trans Appl Supercond 12(1):1293–1296

    Article  Google Scholar 

  2. Tomioke A, Bohno T, Nose S et al (1999) Experimental results of the model coil for cooling design of a 1T cryocooler-cooled pulse coil for SMES. IEEE Trans Appl Supercond 9(2):932–935

    Google Scholar 

  3. Fhjishiro H, Okamoto T, Hirose K (2001) Thermal contact resistance between high-Tc superconductor and copper. Phys C 357–360:785–788

    Google Scholar 

  4. Ling S, Huiling W, Yuejin T et al (2005) Experimental investigation into HTS-SMES magnet by cryocooler cooled. J Huazhong Univ Sci Tech (Nature Science Edition) 33(1):90–92

    Google Scholar 

  5. Zhao L, Phelan PE (1999) Thermal contact conductance across filled polyimide films at cryogenic temperature. Cryogenics 39:803–809

    Article  Google Scholar 

  6. Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–667

    Article  Google Scholar 

  7. Wang H, Rao R, Li J, Tang Y et al (2001) Progress on cryogenic technology applied in super conducting electric engineering. Autom Electr Power Syst 25:65–68

    Google Scholar 

  8. Wang HL, Wager T, Eska G (2000) An aluminium heat switch made from cold-pressed Cu-Al composite. Phys B 284–288:2024–2025

  9. Zhang Y, Xu X, Rao R, Huiling W et al (2003) Cryogenic properties and thermal analysis of aluminum nitride. Cryogenics 131:8–13

    Google Scholar 

  10. Powell RL, Roder HM, Roger WM (1957) Low-temperature thermal conductivity of some commercial coppers. J Appl Phys 28(11):1282–1288

    Article  Google Scholar 

  11. Jagannadham K, Wang H (2002) Thermal resistance of interfaces in AlN-diamond thin film composites. J Appl Phys 91(3):1224–1235

    Article  Google Scholar 

  12. Graebner E (1993) Study of defects in chemical vapor deposited diamond films. Diam Film Technol 74(9):244–250

    Google Scholar 

  13. Phelan PE (1998) Application of diffuse mismatch theory to the prediction of thermal boundary resistance in thin-film high-Tc superconductors. J Heat Transf 120:37–43

    Article  Google Scholar 

  14. Slack GA, Tanzilli RA, Phol RO et al (1987) The intrinsic thermal conductivity of AlN. Phy Chem Solids 48(7):641–647

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Nature Science Fund of China (Grant No. 51076165) for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Wu, G., Wang, Hl. et al. Interfacial thermal contact resistance between aluminum nitride and copper at cryogenic temperature. Heat Mass Transfer 48, 999–1004 (2012). https://doi.org/10.1007/s00231-011-0953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0953-y

Keywords

Navigation