Skip to main content
Log in

Linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The stability analysis of the quiescent state in a Maxwell fluid-saturated densely packed porous medium subject to vertical concentration and temperature gradients is presented. A single phase model with local thermal equilibrium between the porous matrix and the Maxwell fluid is assumed. The critical Darcy–Rayleigh numbers and the corresponding wave numbers for the onset of stationary and oscillatory convection are determined. A Lorenz like system is obtained for weakly nonlinear stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ABCDE :

Time dependent amplitudes

\(\bar{A},\bar{B},\bar{C},\bar{D},\bar{E}\) :

Scaled time dependent amplitudes

d :

Depth of porous medium

Da :

Darcy number, K/d 2

D f :

Dufour parameter, \(k_1\Updelta S/k^{\prime}\Updelta T\)

g :

Acceleration due to gravity

K :

Permeability constant

kk′:

Thermal and solutal diffusivity

k 1, k 2 :

Heat and mass flux parameters

Le :

Lewis number, k/k

M :

Heat capacity ratio, (ρc) f /(ρc) p

N :

Buoyancy ratio, \(\alpha^{\prime}\Updelta S/\alpha\Updelta T\)

Ra :

Thermal Rayleigh number, \(g\alpha d^{3}\Updelta T/\nu k\)

Ra D :

Darcy–Rayleigh number, Ra Da

Rs :

Solutal Rayleigh number, \(g\alpha^{\prime} d^{3}\Updelta S/\nu k\)

Rs D :

Solutal Darcy–Rayleigh number, LeNRa D

S :

Solute concentration

Sr :

Soret number, \(k_2\Updelta T/k\Updelta S\)

t :

Dimensional time

T :

Temperature

\(t^{\ast}\) :

Dimensionless time

v :

Darcian velocity

w :

z-Component of Darcian velocity

\(w^{\ast}\) :

Non-dimensional velocity

W :

Velocity function

xz :

Streamwise and normal coordinate axes

\(x^{\ast},z^{\ast}\) :

Dimensionless counterparts of xz

α:

Coefficient of thermal expansion

α′:

Coefficient of solutal expansion

\(\epsilon\) :

Scaled normalized porosity, \(\bar{\epsilon}M\)

\(\bar{\epsilon}\) :

Normalized porosity

θ:

Non-dimensional temperature

\(\Uptheta\) :

Temperature function

λ:

Dimensionless relaxation time, \(\bar{\lambda}k/d^{2}\)

\(\bar{\lambda}\) :

Stress relaxation

μ:

Dynamic viscosity

ν:

Kinematic viscosity

ρ:

Fluid density

ρ f :

Density at current state

σ:

Growth rate

ω:

Frequency

τ:

Dimensionless time

ϕ:

Non-dimensional concentration

\(\Upphi\) :

Concentration function

b :

Basic state

o:

Reference state

1,2:

Lower/upper wall value

References

  1. Khuzhayorov B, Auriault J-L, Royer P (2000) Derivation of macroscopic ltration law for transient linear viscoelastic fluid flow in porous media. Int J Eng Sci 38:487–504

    Article  MathSciNet  MATH  Google Scholar 

  2. Khan M, Saleem M, Fetecau C, Hayat T (2007) Transient oscillatory and constantly accelerated non-Newtonian flow in a porous medium. Int J Non Linear Mech 42:1224–1239

    Article  MATH  Google Scholar 

  3. Bénard H (1900) Les tourbillons cellulaires dans une nappe liquide. Revue Gen Sci Our Appl 11:1261–1271

    Google Scholar 

  4. Rayleigh (1916) On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil Mag Ser 32(6):529–546

  5. Jeffreys H (1926) The stability of a layer of fluid heated below. Phil Mag Ser 7(2):833–844

    MathSciNet  Google Scholar 

  6. Pellew A, Southwell RV (1940) On maintained convective motion in a fluid heated from bellow. Proc R Soc A 176:312–343

    Article  MathSciNet  Google Scholar 

  7. Horton CW, Rogers FT (1945) Convection currents in a porous medium. J Appl Phys 16:367–370

    Article  MathSciNet  MATH  Google Scholar 

  8. Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Phil Soc 44:508–521

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon, Oxford

    MATH  Google Scholar 

  10. Hamed HB, Bennacer R, Sammouda H (2008) Poiseuille Rayleigh–Benard problem in a horizontal duct of finite length in streamwise direction: stability analysis. Int J Prog Comput Fluid Dyn 8(6):342–350

    Article  Google Scholar 

  11. Bejan A (2004) Convection heat transfer. Wiley, New Jersey

    Google Scholar 

  12. Nield DA, Bejan A (2006) Convection in porous media. Springer, New York

    Google Scholar 

  13. Vafai K (ed) (2000) Handbook of porous media. Marcel Dekker, New York

  14. Nield DA (1968) Onset of thermohaline convection in a porous medium. Water Resour Res 11:553–560

    Article  Google Scholar 

  15. Taslim ME, Narusawa U (1986) Binary fluid convection and double-diffusive convection in porous medium. J Heat Transf 108:221–224

    Article  Google Scholar 

  16. Poulikakos D (1986) Double diffusive convection in a horizontal sparcely packed porous layer. Int Commun Heat Mass Transf 13:587–598

    Article  Google Scholar 

  17. Alloui Z, Vasseur P, Robillard L, Bahloul A (2010) Onset of double-diffusive convection in a horizontal Brinkman cavity. Chem Eng Commun 197:387–399

    Article  Google Scholar 

  18. Sokolov M, Tanner RI (1972) Convective stability of a general viscoelastic fluid heated from below. Phys Fluids 15:534–539

    Article  MATH  Google Scholar 

  19. Eltayeb A (1977) Nonlinear thermal convection in an elasticoviscous layer heated from below. Proc R Soc Lond A 356:161–176

    Article  MathSciNet  MATH  Google Scholar 

  20. Khayat RW (1994) Chaos and overstability in the thermal convection of viscoelastic fluids. J Non Newtonian Fluid Mech 53:227–255

    Article  Google Scholar 

  21. Siddheshwara PG, Sekhar GN, Jayalatha G (2010) Effect of time-periodic vertical oscillations of the Rayleigh–Bénard system on nonlinear convection in viscoelastic liquids. J Non Newtonian Fluid Mech 165:1412–1418

    Article  Google Scholar 

  22. Siddheshwar PG (2002) Oscillatory convection in ferromagnetic, dielectric and viscoelastic liquids. Int J Mod Phys B 16:2629–2635

    Article  Google Scholar 

  23. Siddheshwar PG, Srikrishna CV (2002) Unsteady non-linear convection in a second-order fluid. Int J Nonlinear Mech 37:321–330

    Article  MATH  Google Scholar 

  24. El-Sayed MF (2001) Electrohydrodynamic instability of two superposed Walters B viscoelastic fluids in relative motion through porous medium. Arch Appl Mech 71:717–732

    Article  MATH  Google Scholar 

  25. Siddheshwar PG, Srikrishna CV (2008) Effect of time-periodic modulation on convection in solutions of dilute polymeric liquids in a porous medium. Int J Appl Mech Eng 13:753–780

    Google Scholar 

  26. Sekhar GN, Jayalatha G (2010) Elastic effects on Rayleigh–Bénard convection in liquids with temperature-dependent viscosity. Int J Therm Sci 49:67–75

    Article  Google Scholar 

  27. Kim MS, Lee SB, Kim S, Chung BJ (2003) Thermal instability of viscoelastic fluids in porous media. Int J Heat Mass Transf 46:5065–5072

    Article  MATH  Google Scholar 

  28. Tan WC, Masouka T (2007) Stability analysis of Maxwell fluid in a porous medium heated from below. Phys Lett A 360:454–460

    Article  Google Scholar 

  29. Sheu LJ, Tam LM, Chen JH, Chen HK, Lin KT, Kang Y (2008) Chaotic convection of viscoelastic fluids in porous media. Chaos Solitons Fractals 37:113–124

    Article  MathSciNet  MATH  Google Scholar 

  30. Sheu LJ, Chen JH, Chen HK, Tam LM, Chao YC (2009) A unified system describing dynamics of chaotic convection. Chaos Solitons Fractals 41:123–130

    Article  MATH  Google Scholar 

  31. Shivakumara IS, Lee J, Malashetty MS, Sureshkumar S (2011) Effect of thermal modulation on the onset of convection in Walters B viscoelastic fluid-saturated porous medium. Transp Porous Media 87:291–307

    Article  MathSciNet  Google Scholar 

  32. Awad FG, Sibanda P, Motsa SS (2010) On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Appl Math Model 34:3509–3517

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang S, Tan WC (2008) Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys Lett A 372:3046–3050

    Article  MATH  Google Scholar 

  34. Bahloul A, Boutana N, Vasseur P (2003) Double-diffusive and Soret-induced convection is a shallow horizontal porous layer. J Fluid Mech 491:325–352

    Article  MATH  Google Scholar 

  35. Mahidjiba A, Bennacer R, Vasseur P (2003) Effect of the boundary conditions on convection in a horizontal fluid layer with the Soret contribution. Acta Mech Sin 160:161–177

    Article  MATH  Google Scholar 

  36. Malashetty MS, Gaikwad SN, Swamy M (2006) An analytical study of linear and non-linear double diffusive convection with Soret effect in couple stress liquids. Int J Therm Sci 45:897–907

    Article  Google Scholar 

  37. Partha MK, Murthy PVSN, Sekhar GPR (2006) Soret and Dufour effects in a non-Darcy porous medium. J Heat Transf 128:605–610

    Article  Google Scholar 

  38. Rudraiah N, Malashetty MS (1986) The influence of coupled molecular diffusion on double-diffusive convection in a porous medium. ASME J Heat Transf 108:872–876

    Article  Google Scholar 

  39. Rudraiah N, Siddheshwar PG (1998) A weak nonlinear stability analysis of double diffusive convection with cross-diffusion in a fluid-saturated porous medium. Heat Mass Transf 33:287–293

    Article  Google Scholar 

  40. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  41. Hilborn RC (1961) Chaos and nonlinear dynamics. Oxford University Press, New York

    Google Scholar 

  42. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  43. Sparrow C (1981) The Lorenz equations: bifurcations, chaos, and strange attractors. Lecture Notes in Applied Mathematics, vol 41. Springer, New York

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledgement the many fruitful discussions with Prof PG Siddheshwar, Department of Mathematics, Bangalore University, Central College Campus, Bangalore during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sibanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayana, M., Sibanda, P., Motsa, S.S. et al. Linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium. Heat Mass Transfer 48, 863–874 (2012). https://doi.org/10.1007/s00231-011-0939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0939-9

Keywords

Navigation