Skip to main content
Log in

Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The flow patterns and heat transfer coefficients of R-22 and R-134a during evaporation in small diameter tubes were investigated experimentally. The evaporation flow patterns of R-22 and R-134a were observed in Pyrex sight glass tubes with 2 and 8 mm diameter tube, and heat transfer coefficients were measured in smooth and horizontal copper tubes with 1.77, 3.36 and 5.35 mm diameter tube, respectively. In the flow patterns during evaporation process, the annular flows in 2 mm glass tube occurred at a relatively lower vapor quality compared to 8 mm glass tube. The flow patterns in 2 mm glass tube did not agree with the Mandhane’s flow pattern maps. The evaporation heat transfer coefficients in the small diameter tubes (d i  < 6 mm) were observed to be strongly affected by tube diameters, and to differ from those in the large diameter tubes. The heat transfer coefficients of 1.77 mm tube were higher than those of 3.36 mm and 5.35 mm tube. Most of the existing correlations failed to predict the evaporation heat transfer coefficient in small diameter tubes. Therefore, based on the experimental data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

d:

Diameter of tube (m)

dz:

Length of subsection (m)

f:

Two-phase multiplier

G:

Mass flux (kg m−2 s−1)

h:

Heat transfer coefficient (kW m−2 K−1)

ifg :

Latent heat (kJ kg−1)

i:

Enthalpy (kJ kg−1)

ID:

Inner diameter (m)

j:

Superficial velocity (m s−1)

k:

Thermal conductivity (W m−1 K−1)

L:

Total evaporation length, test section length (m)

N:

Number of data

M:

Mass flow rate (kg h−1)

q:

Heat flux (kW m−2)

Q:

Heat capacity (kW)

T:

Temperature (K)

x:

Vapor quality

zsc :

Subcooled length

Δ:

Difference

μ:

Dynamic viscosity (Pa s)

ρ:

Density (kg m−3)

X tt :

Martinelli parameter

avg:

Average

abs:

Absolute

cal:

Calculated

e:

Evaporation

exp:

Experimental

f:

Saturated liquid

g:

Saturated gas

i:

Inner diameter

in:

Inlet

l:

Liquid

L:

Local

OD:

Outer diameter

out:

Outlet

r:

Refrigerant

sat:

Saturation

t:

Turbulent

TP:

Two-phase

w:

Wall

wi:

Inside wall

wo:

Outside wall

References

  1. Webb RL, Zhang M, Narayanamurthy R (1998) Condensation heat transfer in small diameter tubes. In: Proceedings of 11th IHTC, vol 6, pp 403–408, Kyongju

  2. Oh HK, Hong JW (1999) Condensing heat transfer characteristics of alternative refrigerants in small diameter tubes. J SAREK 28(5):396–402

    Google Scholar 

  3. Oh HK, Katsuta M, Shibata K (1998) Heat transfer characteristics of R134a in a capillary tube heat exchanger. In: Proceedings of 11th international heat transfer conference, vol 6, pp 131–136

  4. Tran TN, Wambsganss MW, France DM (1996) Small circular- and rectangular-channel boiling with two refrigerants. Int J Multiph Flow 22(3):485–498

    Article  MATH  Google Scholar 

  5. Bao ZY, Fletcher DF, Haynes BS (2000) Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. Int J Heat Mass Transf 43(18):3347–3358

    Article  Google Scholar 

  6. Haynes BS, Fletcher DF (2003) Subcooled flow boiling heat transfer in narrow passages. Int J Heat Mass Transf 46(19):3673–3682

    Article  Google Scholar 

  7. Zhang W, Hibiki T, Mishima K (2004) Correlation for flow boiling heat transfer in mini-channels. Int J Heat Mass Transf 47:5749–5763

    Article  Google Scholar 

  8. Chen JC (1996) A correlation for boiling heat transfer to saturated fluids in convective flow. I&EC Proc Des Dev 5:322–329

    Article  Google Scholar 

  9. Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29(3):351–358

    Article  MATH  Google Scholar 

  10. Kandlikar SG (2004) Heat transfer mechanisms during flow boiling in microchannels. ASME J Heat Transf 126(1):8–16

    Article  Google Scholar 

  11. Choi KI, Pamitran AS, Oh CY, Oh JT (2007) Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels. Int J Refrig 30(8):1336–1346

    Article  Google Scholar 

  12. Choi KI, Pamitran AS, Oh CY, Oh JT (2008) Two-phase pressure drop of R-410A in horizontal smooth minichannels. Int J Refrig 31(1):119–129

    Article  Google Scholar 

  13. Yan YY, Lin TF (1998) Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int J Heat Mass Transf 41(24):4183–4194

    Article  Google Scholar 

  14. Fujita Y, Yang Y, Fujita N (2002) Flow boiling heat transfer and pressure drop in uniformly heated small tubes. In: Proceedings of the twelfth international heat transfer conference, vol 3, pp 743–748

  15. Kim MH, Lee SY, Mehendale SS, Webb RL (2003) Microchannel heat exchanger design for evaporator and condenser applications. Adv Heat Transf 37:297–429

    Article  Google Scholar 

  16. Ghiaasiaan SM, Abdel-khalik SI (2001) Two-phase flow in microchannels. Adv Heat Transf 34:145–254

    Article  Google Scholar 

  17. Thome JR (2004) Boiling in microchannels: a review of experiment and theory. Int J Heat Fluid Flow 25(2):128–139

    Article  MathSciNet  Google Scholar 

  18. Sobhan CB, Garimella SV (2001) A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys Eng 5(4):293–311

    Article  Google Scholar 

  19. Kandkikar SG (2002) Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators. Heat Transf Eng 23(1):5–23

    Article  Google Scholar 

  20. Watel B (2003) Review of saturated flow boiling in small passages of compact heat-exchangers. Int J Therm Sci 42(2):107–140

    Article  Google Scholar 

  21. Yun R, Heo JH, Kim Y (2006) Evaporative heat transfer and pressure drop of R-410A in micro-channels. Int J Refrig 29(1):92–100

    Article  Google Scholar 

  22. Lee J, Mudawar I (2005) Two-phase flow in high heat-flux micro-channel heat sink for refrigeration cooling applications: part II—heat transfer characteristics. Int J Heat Mass Transf 48(5):941–955

    Article  Google Scholar 

  23. Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C (2005) Two-phase frictional pressure gradient of R236ea, R-134a and R-410A inside multi-port mini-channels. Exp Therm Fluid Sci 29(7):861–870

    Article  Google Scholar 

  24. Vlasie C, Macchi H, Guilpart J, Agostini B (2004) Flow boiling in small diameter channels. Int J Refrig 27(2):191–201

    Article  Google Scholar 

  25. Lemmon EW, Huber ML, McLinden MO (2007) Reference fluid thermodynamic and transport properties (REFPROP), Version 8.0. In: NIST Standard Reference Database 23. National Institute of Standard and Technology, Gaithersburg, MD, USA

  26. Moffat RJ (1998) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1(1):3–17

    Article  MathSciNet  Google Scholar 

  27. Baker O (1954) Design of pipelines for simultaneous flow of oil and gas. Oil Gas J 53:185–195

    Google Scholar 

  28. Scott DS (1963) Properties of cocurrent gas–liquid flow. Adv Chem Eng 4:199–277

    Article  Google Scholar 

  29. Mandhane JM (1974) A flow pattern map for gas-liquid flow in horizontal pipes. Int J Multip flow 1(4):537–554

    Article  Google Scholar 

  30. Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow. AIChE J 22(2):43–55

    Google Scholar 

  31. Bennett AW, Hewitt GF, Kearsey HA, Keeys RKF, Lacey PMC (1966) Flow visualization studies of boiling at high pressure. In: Proceedings of the Institution of Mechanical Engineers, 184, Pt 3C-Boiling Heat Transfer, pp 260–270

  32. Bergles AE, Lopina RF, Fiori MP (1967) Critical-heat-flux and flow pattern observation for low-pressure water flowing in tubes. Trans ASME Ser C 89-1:69–74

    Google Scholar 

  33. Wambsganss MW, Jendrzejczyk JA, France DM (1991) Two-phase flow patterns and transitions in a small, horizontal, rectangular channel. Int J Multip Flow 17(3):327–342

    Article  MATH  Google Scholar 

  34. Dobson MK, Chato JC, Hinde DK, Wang SP (1994) Experimental evaluation of internal condensation of refrigerations R-12 and R-134a. ASHRAE Trans 5(3):744–754

    Google Scholar 

  35. Breber G, Palen JW, Taborek J (1980) Prediction of horizontal tube-side condensation of pure components using flow regime criteria. J Heat Transf 102:471–476

    Article  Google Scholar 

  36. Tandon TN, Varma HK, Gupta CP (1982) A new flow regime map for condensation inside horizontal tubes. J Heat Transf 104:763–768

    Article  Google Scholar 

  37. Yan YY, Lin TF (2003) Reply to Prof. R.L. Webb’s and Dr. J.W. Paek’s comments. Int J Heat Mass Transf 46(6):1111–1113

    Article  Google Scholar 

  38. Oh HK, Hong JW (2002) Study on the flow characteristics of R-22, R-134a in small diameter tubes. Trans SAREK 14(9):756–765

    Google Scholar 

  39. Sumith B, Kaminaga F, Matsumura K (2003) Saturated flow boiling of water in a vertical small diameter tube. Exp Therm Fluid Sci 27(7):789–801

    Article  Google Scholar 

  40. De Rossi F, Mauro AW, Rosato A (2009) Local heat transfer coefficients and pressure gradients for R-134a during flow boiling at temperature between −9°C and +20°C. Energy Convers Manag 50(7):1714–1721

    Article  Google Scholar 

  41. Agostini B, Bontemps A (2005) Vertical boiling of refrigerant R-134a in small channels. Int J Heat Fluid Flow 26(2):296–306

    Article  Google Scholar 

  42. Shiferaw D, Huo X, Karayiannis TG, Kenning DBR (2010) Examination of heat transfer correlations and a model for flow boiling of R134a in small diameter tubes. Int J Heat Mass Transf 50(25–26):5177–5193

    Google Scholar 

  43. Lie YM, Su FQ, Lai RL, Lin TF (2006) Experimental study of evaporation heat transfer characteristics of refrigerants R-134a and R-407C in horizontal small tubes. Int J Heat Mass Transf 49(1–2):207–218

    Article  Google Scholar 

  44. Shah MM (1982) Chart correlation for saturated boiling heat transfer equations and further study. ASHRAE Trans 88:185–196

    Google Scholar 

  45. Jung DS, McLinden M, Randermacher R, Didion D (1989) A study of flow boiling heat transfer with refrigerant mixtures. Int J Heat Mass Transf 32(9):1751–1764

    Article  Google Scholar 

  46. Liu Z, Winterton RHS (1991) A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34(1):2759–2766

    Article  Google Scholar 

  47. Wattelet JP, Chato JC, Souza AL, Christoffersen BR (1994) Evaporative characteristics of R-12, R-134a, and a mixture at low mass fluxes. ASHRAE Trans 94-2-1:603–615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyo Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, HK., Son, CH. Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes. Heat Mass Transfer 47, 703–717 (2011). https://doi.org/10.1007/s00231-011-0761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0761-4

Keywords

Navigation