Skip to main content
Log in

Shell-and-double concentric-tube heat exchangers

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study concerns a new type of heat exchangers, which is that of shell-and-double concentric-tube heat exchangers. These heat exchangers can be used in many specific applications such as air conditioning, waste heat recovery, chemical processing, pharmaceutical industries, power production, transport, distillation, food processing, cryogenics, etc. The case studies include both design calculations and performance calculations. It is demonstrated that the relative diameter sizes of the two tubes with respect to each other are the most important parameters that influence the heat exchanger size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

b :

Baffle pitch, m

C :

Heat capacity flow rate, W/K

C p :

Specific heat, J/(kg K)

D :

Diameter, m

d :

Inner tube diameter, m

F :

Corrective factor

G :

Mass velocity, kg/(m2 s)

h :

Convective heat transfer coefficient, W/(m2 K)

K :

Overall heat transfer coefficient, W/(m2 K)

L :

Length of tube, m

M :

Mass, kg

m :

Mass flow rate, kg/s

N c :

Number of baffles

N t :

Total number of tubes

N td :

Number of tubes on the shell diameter

Ntp :

Number of tubes by pass

p :

Tube pitch, m

P T :

Friction power expenditure, W

Δp :

Pressure drop, Pa

Q :

Mass flow rate, kg/h

S :

Exchange surface, m2

S p :

Flow cross sectional area, m2

Τ :

Temperature, °C

ΔΤ ML :

Log-mean temperature difference, °C

v :

Fluid velocity, m/s

Z :

Heat capacity flow rate ratio

δ:

Thickness, m

η:

Heat exchanger effectiveness

κ:

Factor taking account of the ratio of the internal and external diameters in the cases of the annular tubes

λ:

Thermal conductivity, W/(m K)

μ:

Dynamic viscosity, Pa s

π:

3.14l59 rad

ρ:

Density, kg/m3

Φ:

Heat flux, W

υ:

Kinematic viscosity, m2/s

Ω:

Darcy coefficient

Nu :

Nusselt number: Nu = hd h

Pr :

Prandtl number: Pr = μC p

Re :

Reynolds number: Re = vd h

1:

Industrial oil (shell side), outer

2:

Water, inner

3:

Industrial oil (inner tube)

c:

Shell

h:

Hydraulic

i:

Inlet

io:

Industrial oil

o:

Outlet

st:

Shell-and-tube heat exchanger

sdct:

Shell-and-double concentric-tube heat exchanger

t:

Wall

References

  1. Kern DQ (1984) Process heat transfer. McGraw-Hill, New York

    Google Scholar 

  2. Pierre B (1983) Dimensionnement des échangeurs de chaleur. Revue Générale Thermique 587–615

  3. Bougriou C (1991) Etude du transfert de chaleur par condensation d’air humide sur des tubes à ailettes. PhD thesis, INSA de Lyon ISAL87

  4. Gnielinski V (1976) New equations for heat transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  5. Gnielinski V, Zukauskas A, Skrinska A (1983) Banks of plains and finned tubes, single phase convective heat transfer. In: Heat exchanger design handbook, vol 2, 2.5.3.1–2.5.3.16

  6. Gnielinski V (1978) Gleichungen zur Berechnung des warmeübergangs in querdurchstromten einzelnen rohrreihen und rohrbudeln, Forsch. Ingenieurwes 44:15–25

    Article  Google Scholar 

  7. Zukauskas A, Ambrazyavizius AB (1961) Heat transfer of plate in a liquid flow. Int J Heat Mass Transf 3:305–309

    Article  Google Scholar 

  8. Bouvenot A (1981) Transfert de chaleur. Masson, Paris

    Google Scholar 

  9. Sacadura JF (1980) Initiation aux transferts thermiques. Techniques et Documentation, France

    Google Scholar 

  10. Frass AP, Ozisik MN (1965) Heat exchangers design. Wiley, New York

    Google Scholar 

  11. Afgan V, Schlunder EU (1974) Heat exchangers; design and theory. McGraw-Hill, New York

    Google Scholar 

  12. Bougriou C, Baadache K (2008) Shell-and-double concentric-tube heat exchangers. Patent PCT, DZ2008/000002

  13. Bougriou C, Bessaïh R, Le Gall R, Solecki JC (2004) Measurement of the temperature distribution on a circular plane fin by infrared thermography technique. Appl Therm Eng 24:813–825

    Article  Google Scholar 

  14. Bougriou C, Bessaïh R (2005) Determination of apparent heat transfer coefficient by condensation in an industrial finned-tube heat exchanger: prediction. Appl Therm Eng 25(11–12):1579–1587

    Google Scholar 

  15. Bougriou C, Bessaïh R, Bontemps A (2005) Experimental and computational performances of heat exchangers functioning in wet regime by using the film method. Int Commun Heat Mass Transf 32:1135–1142

    Article  Google Scholar 

  16. Bougriou C, Bessaïh R, Bontemps A (2005) Experimental study of performances of industrial heat exchangers functioning in wet regime. Int J Heat Exch 6:179–202

    Google Scholar 

  17. Bougriou C, Bessaïh R (2007) Prediction and measurement of apparent heat transfer coefficient by condensation in finned-tube heat exchangers. Heat Transf Eng 28:940–953

    Article  Google Scholar 

  18. Bougriou C (2002) Etude du récupérateur de chaleur croisé à tubes à ailettes. Revue des Energies Renouvelables 5:59–73

    Google Scholar 

  19. Bougriou C (1999) Etude du récupérateur de chaleur croisé à tubes lisses. Revue des Energies Renouvelables 2:109–122

    Google Scholar 

  20. Bougriou C (1998) Calcul et technologies des échangeurs. Department of Mechanics, University of Batna, Batna

  21. Baadache K (2005) Etude numérique d’un échangeur de chaleur à triple tube concentrique en régime permanent (Co-courant et Contre-courant). Department of Mechanics, University of Batna, Batna

  22. Sekulic DP, Herman CV (1987) Transient temperature fields in a three fluid heat exchanger. In: Proceedings of the 17th international congress of refrigeration, Vienna, B, pp 833–837

  23. Űnal A (1998) Theoretical analysis of triple concentric-tube heat exchanger—Part I Mathematical modeling. Int Commun Heat Mass Transf 25:949–958

    Article  Google Scholar 

  24. Űnal A (2001) Theoretical analysis of triple concentric tube heat exchanger—Part II Case studies. Int Commun Heat Mass Transf 28:243–256

    Article  Google Scholar 

  25. García-Valladares O (2004) Numerical simulation of triple concentric-tube heat exchangers. Centro de Investigación en Energía (CIE), Universidad Nacional Autónoma de México (UNAM), Privada Xochicalco S/N, Temixco, 62580 Morelos, Mexico, pp 980–991

  26. Zuritz C (1990) On the design of triple concentric-tube heat exchangers. J Food Process Eng 12:113–130

    Article  Google Scholar 

  27. Ünal A (2003) Effectiveness-NTU relations for triple concentric-tube heat exchangers. Int Commun Heat Mass Transf 30:261–272

    Article  Google Scholar 

  28. Bontemps A, Garrigue A, Goubier C, Huetz J, Marvillet C, Mercier P, Vidil R (1998) Echangeur de chaleur—dimensionnement thermique. Techniques de l’ingénieur, traité Génie énergétique. B, pp 21–16

  29. Idelcik IE (1986) Handbook of hydraulic resistance. Eyrolles, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérif Bougriou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougriou, C., Baadache, K. Shell-and-double concentric-tube heat exchangers. Heat Mass Transfer 46, 315–322 (2010). https://doi.org/10.1007/s00231-010-0572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0572-z

Keywords

Navigation