Skip to main content
Log in

Effect of baffle on convective heat transfer from a heat generating element in a ventilated cavity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper reports the results of a numerical and experimental investigation of mixed convection from a heat-generating element in a vented cavity with/without a baffle arrangement. Numerical investigations are carried out to determine the best position of the baffle on the walls of a rectangular chamber. The effect of varying the baffle heights and the position on the enhancement of heat transfer from the heater is investigated. Experiments were carried out for a heater located centrally in a parallelepiped that has an air inlet and an outlet port. The vertical baffle is fixed on the bottom wall of the chamber. After a detailed parametric study, correlations have been developed for the average Nusselt number and the maximum dimensionless temperature occurring in the heat generating element. Comparison of the numerical and experimental results for the geometry considered showed good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

area in m2

C p :

specific heat at constant pressure (J/kgK)

C v :

specific at constant volume (J/kgK)

corr:

correlation

E :

total energy (J)

exptl:

experimental

Gr :

Grashof number, \( \frac{{g\beta \Updelta TL^{3} }}{{\nu^{2} }} \)

g :

gravitational acceleration (9.81 m/s2)

G k :

production of turbulent kinetic energy (kg/m s3)

G b :

buoyant production of turbulent kinetic energy (kg/m s3)

h :

heat transfer coefficient (W/m2 K)

K :

turbulence intensity (m2/s2)

k :

thermal conductivity (W/mK); turbulent kinetic energy per unit mass (J/kg)

L :

height of the heater (m)

Nu :

Nusselt number, \( \frac{hL}{k} \)

P :

pressure (Pa)

Pr :

Prandtl number, \( \frac{{\mu C_{\text{p}} }}{k} \)

q v :

volumetric heat generation (W/m3)

Q :

total heat input (W)

R :

universal gas constant (8.31447 × 103 J/kg mol K)

Ra :

Rayleigh number, Gr Pr

Re :

Reynolds number, \( \frac{{u_{\infty } L}}{\nu } \)

Ri :

Richardson number, \( \frac{Gr}{{{Re}^{2} }} \)

R ε :

a term in the RNG turbulence model

S :

dimensionless location of the heater (X/W)

S k :

user defined source term in the RNG turbulence model

S ε :

user defined source term in the RNG turbulence model

T avg :

average temperature of the heater (K)

T :

ambient temperature (K)

T w :

wall temperature (K)

ΔT ref :

reference temperature difference, \( \frac{{q_{v} L^{2} }}{{k_{s} }}\;({\text{K)}} \)

u :

horizontal component of the velocity (m/s)

u :

inlet velocity (m/s)

u τ :

frictional velocity \( \sqrt {\tau_{\text{w}} /\rho } ,\;({{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}) \)

v :

vertical component of the velocity (m/s)

X :

location of the heater in the horizontal direction from left wall (m)

x :

horizontal distance (m)

y :

vertical distance (m)

y + :

dimensionless distance from the wall \( u_{\tau } y/\nu \)

W :

width of the chamber (100 mm)

α :

thermal diffusivity (m2/s)

β :

coefficient of thermal expansion (1/T, 1/K)

δ ij :

Kronecker delta

ε :

emissivity of the surface or dissipation rate of turbulent kinetic energy as the case may be (m2/s3)

μ :

dynamic viscosity (N s/m2)

ν :

kinematic viscosity (m2/s)

ρ :

density of air (kg/m3)

σ :

Stefan Boltzmann constant (5.67 × 10−8 W/m2 K4)

τ :

shear stress (N/m2)

τ w :

wall shear stress (N/m2)

Φ:

dimensionless temperature, \( \frac{{T_{\text{avg}} - T_{\infty } }}{{\Updelta T_{\text{ref}} }} \)

avg:

average

∞:

inlet and ambient

f:

fluid

s:

solid

v:

volumetric

References

  1. Davalath J, Bayazitoglu Y (1987) Forced convection cooling across rectangular blocks. ASME J Heat Transfer 109:321–328

    Article  Google Scholar 

  2. Idem SA, Jung C, Gonzalez GJ, Goldschmidt VW (1987) Performance of air-to-water copper finned-tube heat exchangers at moderately low air-side Reynolds numbers, including effects of baffles. Int J Heat Mass Transfer 30:1733–1741

    Article  Google Scholar 

  3. Kotcioglu I, Ayhan T, Olgun H, Ayhan B (1998) Heat transfer and flow structure in a rectangular channel with wing-type vortex generator. Tr J Eng Environ Sci 22:185–195

    Google Scholar 

  4. Ko K-H, Anand NK (2003) Use of porous baffles to enhance heat transfer in a rectangular channel. Int J Heat Mass Transfer 46:4191–4199

    Article  Google Scholar 

  5. Hsieh SS, Huang IW (2000) Heat transfer and pressure drop of laminar flow in horizontal tubes with/without longitudinal inserts. ASME J Heat Transfer 122:465–475

    Article  Google Scholar 

  6. Khan JA, Hinton J, Baxter SC (2002) Enhancement of heat transfer with inclined baffles and ribs combined. J Enhanced Heat Transfer 9:137–151

    Article  Google Scholar 

  7. Dutta P, Hossain A (2005) Internal cooling augmentation in rectangular channel using two inclined baffles. Int J Heat Fluid Flow 26:223–232

    Article  Google Scholar 

  8. Karwa R, Maheswari BK, Karwa N (2005) Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles. Int Commun Heat Mass Transfer 32:275–284

    Article  Google Scholar 

  9. Kim SH, Anand AK (1994) Laminar developing flow and heat transfer between a series of parallel plates with surface mounted discrete heat sources. Int J Heat Mass Transfer 37:2231–2244

    Article  MATH  Google Scholar 

  10. Hsieh SS, Wen M-Y (2006) Developing three-dimensional laminar mixed convection in a circular tube inserted with longitudinal strips. Int J Heat Mass Transfer 19:299–310

    Google Scholar 

  11. Nasiruddin MH, Kamran S (2007) Heat transfer augmentation in a heat exchanger tube using a baffle. Int J Heat Fluid Flow 28:318–328

    Article  Google Scholar 

  12. Young TJ, Vafai K (1998) Convective flow and heat transfer in a channel containing multiple heated obstacles. Int J Heat Mass Transfer 41:3279–3298

    Article  MATH  Google Scholar 

  13. Valencia A, Martin JS, Gormaz R (2001) Numerical study of the unsteady flow and heat transfer in channels with periodically mounted square bars. Heat Mass Transfer 37:265–270

    Article  Google Scholar 

  14. Valencia A, Sen M (2003) Unsteady flow and heat transfer in plane channels with spatially periodic vortex generators. Int J Heat Mass Transfer 46:3189–3199

    Article  MATH  Google Scholar 

  15. Bassam A/K Abu-Hijleh (2003) Optimized use of baffles for reduced natural convection heat transfer form a horizontal cylinder. Int J Thermal Sci 42:1061–1071

  16. Brunold CR, Hunns JCB, Mackley MR, Thompson JW (1989) Experimental observations on flow patterns and energy losses for oscillatory flows in ducts with sharp edges. Chem Eng Sci 44:1227–1244

    Article  Google Scholar 

  17. Zhang X, Maruyama S, Yamaguchi H (2005) Laminar natural convection heat transfer from a vertical baffled plate subjected to a periodic oscillation. ASME J Heat Transfer 127:733–739

    Article  Google Scholar 

  18. Cheng J-C, Tsay Y-L (2006) Effect of solid and slotted baffles on the convection characteristics of backward-facing step flow in a channel. Heat Mass Transfer 42:843–852

    Article  Google Scholar 

  19. Jen T-M, Tzeng S-C (2006) Study of flow and heat transfer characteristics in asymmetrically heated sintered porous heat sinks with periodic baffles. ASME J Heat Transfer 128:226–235

    Article  Google Scholar 

  20. Holman JP (1996) Fundamentals of heat and mass transfer, 8th edn. McGraw-Hill, New York

    Google Scholar 

  21. Kline SJ, Mcclintock FA (1953) Describing uncertainties in single sample experiments. Mech Eng 75:3–8

    Google Scholar 

  22. Balaji C, Herwig H (2003) The use of ACFD approach in problems involving surface radiation and free convection. Int Commun Heat Mass Transfer 30:251–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Balaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhakrishnan, T.V., Joseph, G., Balaji, C. et al. Effect of baffle on convective heat transfer from a heat generating element in a ventilated cavity. Heat Mass Transfer 45, 1069–1082 (2009). https://doi.org/10.1007/s00231-008-0474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0474-5

Keywords

Navigation