Skip to main content
Log in

Effects of Lewis number on coupled heat and mass transfer in a circular tube subjected to external convective heating

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat and mass transfer in a circular tube subject to the boundary condition of the third kind is investigated. The closed form of temperature and concentration distributions, the local Nusselt number based on the total external heat transfer and convective heat transfer inside the tube, as well as the Sherwood number were obtained. The effects of Lewis number and Biot number on heat and mass transfer were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

constant in Eq. 4

A m :

coefficient in Eq. 38

B :

constant in Eq. 4

B m :

coefficient in Eq. 39

Bi :

Biot number

C :

mass fraction (dimensionless)

C 1 :

constant in Eq. 29

C 2 :

constant in Eq. 30

c p :

specific heat at constant pressure (J/kg K)

D :

mass diffusivity (m2/s)

F 1 :

unspecified constant in Eq. 24

F 2 :

unspecified constant in Eq. 31

h :

heat transfer coefficient (W/m2 K)

h sg :

latent heat of sublimation (J/kg)

J 0 :

Bessel function of zero order

J 1 :

Bessel function of first order

k :

thermal conductivity (W/m K)

L :

dimensionless latent heat defined by Eq. 5

Lew:

Lewis number

Nu e :

Nusselt number based on the heat transfer of external flow

Nu i :

Nusselt number based on the heat transfer of the internal tube flow

Pe :

Peclet number

R :

radius of the tube (m)

Re :

Reynolds number

r :

radius coordinate

Sh :

Sherwood number

T :

temperature (K)

U :

fluid velocity (m/s)

u :

fluid velocity (m/s)

X :

dimensionless axial coordinate

x :

axial coordinate

W :

eigen function

α :

thermal diffusivity (m2/s)

β :

eigenvalue

φ :

dimensionless concentration

η :

dimensionless radial coordinate

λ :

eigenvalue

θ :

dimensionless temperature

ρ :

density (kg/m3)

o:

entrance

e:

external

i:

internal

m:

mean value control variable

w:

wall

References

  1. Kuu WY, Hardwick LM, Akers MJ (2006) Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles. Int J Pharm 313:99–113

    Article  Google Scholar 

  2. Hottot A, Peczalski R, Vessot S, Andrieu J (2006) Freeze-drying of pharmaceutical proteins in vials: modeling of freezing and sublimation steps. Drying Technol 24:561–570

    Article  Google Scholar 

  3. Millman MJ, Liapis AI, Marchello JM (1985) An analysis of the lyophilization process using a sorption-sublimation model and various operational policies. AIChE J 31:1594–1604

    Article  Google Scholar 

  4. Dyer DF, Sunderland JE (1968) Heat and mass transfer mechanism in sublimation dehydration. J Heat Transfer 90:379–384

    Google Scholar 

  5. Khalloufi S, Robert J-L, Ratti C (2005) Solid foods freeze-drying simulation and experimental data. J Food Process Eng 28:107–132

    Article  Google Scholar 

  6. Mellor JD (1978) Fundamentals of freeze drying. Academic Press Inc., London

    Google Scholar 

  7. Jiao AJ, Han X, Critser JK, Ma HB (2006) Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes. Cryobiology 52:386–392

    Article  Google Scholar 

  8. Boutron P (1986) Comparison with the theory of the kinetics and extent of ice crystallization and of the glass-forming tendency in aqueous cryoprotective solutions. Cryobiology 23:88–102

    Article  Google Scholar 

  9. Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier, Burlington

    Google Scholar 

  10. Sparrow EM, Spalding EC (1968) Coupled laminar heat transfer and sublimation mass transfer in a duct. ASME J Heat Transf 90:115–125

    Google Scholar 

  11. Sparrow EM, Chen TS (1969) Mutually dependent heat and mass transfer in laminar duct flow. J AIChE 3:343–441

    Google Scholar 

  12. Kurosaki Y (1973) Coupled heat and mass transfer in a flow between parallel flat plate (uniform heat flux). Trans JSME 39 part B:2512–2521

    Google Scholar 

  13. Zhang Y, Chen Z (1992) Analytical solution of coupled laminar heat-mass transfer in a tube with uniform heat flux. J Therm Sci 1:184–188

    Article  Google Scholar 

  14. Zhang Y (2002) Coupled forced convection heat and mass transfer in a circular tube with external convective heating. Prog Comput Fluid Dyn 2:90–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Appendix

Appendix

The general solution of equation θ (Eq. 6) can be obtained by separation of variables [14]

$$ \theta = F_{1} e^{{ - 2\beta_{\rm n}^{2} X}} J_{0} \left( {\beta \eta } \right) $$
(24)

where, F 1 is an unspecified constant and β is the eigenvalue.

By using separation of variables method, the solution of φ can be written as

$$ \varphi = H(X)W(\eta ) $$
(25)

Substituting Eq. 25 into Eq. 7, we have

$$ \frac{1}{2}\frac{{H^{\prime} }}{H} = \frac{1}{{{\text{Lew}}W\eta }}\left( {\eta W^{\prime\prime} + W^{\prime} } \right) = - \lambda^{2} $$
(26)

where λ is the eigenvalue. Equation 26 can be rewritten as

$$ H^{\prime} + 2\lambda^{2} H = 0 $$
(27)
$$ W^{\prime\prime} + \frac{1}{\eta }W^{\prime} + \left( {\sqrt {\text{Lew}} \lambda } \right)^{2} W = 0 $$
(28)

The general solution of Eq. 27 is

$$ H = C_{1} e^{{ - 2\lambda^{2} X}} $$
(29)

Equation 28 is a zeroth order of Bessel equation, based on the boundary condition specified by Eq. 9, its solution can be expressed as

$$ W = C_{2} J_{0} \left( {\sqrt {\text{Lew}} \lambda \eta } \right) $$
(30)

Therefore, the dimensionless concentration solution becomes

$$ \varphi = F_{2} e^{{ - 2\lambda^{2} X}} J_{0} \left( {\sqrt {\text{Lew}} \lambda \eta } \right) $$
(31)

where, F 2 is another unspecified constant.

Substituting Eqs. 24 and 31 into Eqs. 10 and 11, one obtains

$$ \lambda = \beta $$
(32)
$$ F_{1} J_{0} \left( \beta \right) = F_{2} J_{0} \left( {\sqrt {\text{Lew}} \beta } \right) $$
(33)

Obviously, F 1 = F 2 when Lew = 1, thus,

$$ BiJ_{0} \left( \beta \right) = \beta \left( {L + 1} \right)J_{1} \left( \beta \right) $$
(34)

When \( {\text{Lew}} \ne 1, \) Eq. 34 should be replaced by

$$ J_{0} \left( {\sqrt {\text{Lew}} \beta } \right){{Bi}}J_{0} \left( \beta \right) = \beta \left[ {\frac{L}{{\sqrt {\text{Lew}} }}J_{1} \left( {\sqrt {\text{Lew}} \beta } \right)J_{0} \left( \beta \right) + J_{0} \left( {\sqrt {\text{Lew}} \beta } \right)J_{1} \left( \beta \right)} \right] $$
(35)

There will be many different eigenvalues which satisfy Eqs. 34 or 35, thus, eigenvalues β m (m = 1, 2, 3,…) obtained by the eigen equations can be expressed by

$$ Bi J_{0} \left( {\beta_{\rm m} } \right) = \beta_{\rm m} \left( {L + 1} \right)J_{1} \left( {\beta_{\rm m} } \right)\; {\text{at}}\; {\text{Lew}} = 1 $$
(36)
$$ \begin{gathered} \beta_{\rm m} \left[ {\frac{L}{{\sqrt {\text{Lew}} }}J_{1} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)J_{0} \left( {\beta_{\rm m} } \right) + J_{0} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)J_{1} \left( {\beta_{\rm m} } \right)} \right] \hfill \\ \quad \quad = {{Bi}}J_{0} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)J_{0} \left( {\beta_{\rm m} } \right)\; {\text{at}}\;{\text{Lew}} \ne 1 \hfill \\ \end{gathered} $$
(37)

Thus, θ and φ can be written as

$$ \theta \left( {\eta ,X} \right) = \sum\limits_{m = 1}^{\infty } {A_{\rm m} e^{{ - 2\beta_{\rm m}^{2} X}} J_{0} \left( {\beta_{\rm m} \eta } \right)} $$
(38)

and

$$ \varphi \left( {\eta ,X} \right) = \sum\limits_{m = 1}^{\infty } {B_{\rm m} e^{{ - 2\beta_{\rm m}^{2} X}} J_{0} \left( {\sqrt {\text{Lew}} \beta_{\rm m} \eta } \right)} $$
(39)

The equation should satisfy the boundary conditions of Eq. 8, i.e.,

$$ 1 = \sum\limits_{m = 1}^{\infty } {A_{\rm m} J_{0} \left( {\beta_{\rm m} } \right)} $$
(40)

Thus,

$$ A_{\rm m} = \frac{{\int_{0}^{1} {\eta J_{0} \left( {\beta_{\rm m} \eta } \right)d\eta } }}{{\int_{0}^{1} {\eta \left( {J_{0} \left( {\beta_{\rm m} \eta } \right)} \right)^{2} d\eta } }} = \frac{{2J_{1} \left( {\beta_{\rm m} } \right)}}{{\beta_{\rm m} \left[ {\left( {J_{0}^{2} \left( {\beta_{\rm m} } \right)} \right) + \left( {J_{1}^{2} \left( {\beta_{\rm m} } \right)} \right)} \right]}} $$
(41)

Similarly:

$$ B_{\rm m} = \frac{{\int_{0}^{1} {\eta J_{0} \left( {\sqrt {\text{Lew}} \beta_{\rm m} \eta } \right)d\eta } }}{{\int_{0}^{1} {\eta \left( {J_{0} \left( {\sqrt {\text{Lew}} \beta_{\rm m} \eta } \right)} \right)^{2} d\eta } }} = \frac{{2J_{1} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)}}{{\sqrt {\text{Lew}} \beta_{\rm m} \left[ {J_{0}^{2} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right) + J_{1}^{2} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)} \right]}} $$
(42)

Therefore, Eqs. 38 and 39 can be rewritten as

$$ \theta \left( {\eta ,X} \right) = \sum\limits_{m = 1}^{\infty } {\frac{{2J_{1} \left( {\beta_{\rm m} } \right)J_{0} \left( {\beta_{\rm m} \eta } \right)}}{{\beta_{\rm m} \left[ {J_{0}^{2} \left( {\beta_{\rm m} } \right) + J_{1}^{2} \left( {\beta_{\rm m} } \right)} \right]}}e^{{ - 2\beta_{\rm m}^{2} X}} } $$
(43)
$$ \varphi \left( {\eta ,X} \right) = \sum\limits_{m = 1}^{\infty } {\frac{{2J_{1} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)J_{0} \left( {\sqrt {\text{Lew}} \beta_{\rm m} \eta } \right)}}{{\sqrt {\text{Lew}} \beta_{\rm m} \left[ {J_{0}^{2} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right) + J_{1}^{2} \left( {\sqrt {\text{Lew}} \beta_{\rm m} } \right)} \right]}}e^{{ - 2\beta_{\rm m}^{2} X}} } $$
(44)

where β m can be obtained by Eqs. 36 and 37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, A., Zhang, Y., Ma, H. et al. Effects of Lewis number on coupled heat and mass transfer in a circular tube subjected to external convective heating. Heat Mass Transfer 45, 591–598 (2009). https://doi.org/10.1007/s00231-008-0463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0463-8

Keywords

Navigation