Skip to main content
Log in

Meshless method for nonlinear heat conduction analysis of nano-composites

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) may become ideal reinforcing materials for high-performance nano-composites due their exceptional properties. Still, much work is needed to be done before the potentials of CNT based composites can be fully realized. The evaluation of effective material properties of nano-composites is one of many difficult tasks. Simulations using continuum mechanics approach can play a significant role in the analysis of these composites. In the present work, nonlinear heat conduction analysis of CNT based composites has been carried out using continuum mechanics approach. Element free Galerkin method has been applied as a numerical tool. Thermal conductivities of nanotube and polymer matrix are assumed to vary quadratically with temperature. Picard and quasi-linearization schemes have been utilized to obtain the solution of a system of nonlinear equations. Cylindrical representative volume element has been used to evaluate the thermal properties of nano-composites. Present simulations show that the temperature dependent matrix thermal conductivity has a significant effect on the equivalent thermal conductivity of the composite, whereas temperature dependent nanotube thermal conductivity has a small effect on the equivalent thermal conductivity of the composite. The results obtained by Picard method have been found almost similar with those obtained by quasi-linearization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

k m :

thermal conductivity of polymer (epoxy resin) matrix (W/m-K)

k o :

reference thermal conductivity of polymer (epoxy resin) matrix (W/m-K)

k c :

thermal conductivity of carbon nanotube (W/m-K)

ko :

reference thermal conductivity of carbon nanotube (W/m-K)

k e :

equivalent thermal conductivity of composite (W/m-K)

L :

length of cylindrical RVE (nm)

L c :

nanotube length (nm)

m :

number of terms in the basis

n :

number of nodes in the domain of influence

N :

number of iterations

N′:

number of time steps

q :

heat flux (W/m2)

r o :

outer radius of CNT (nm)

R o :

radius of cylindrical RVE (nm)

t :

time (s)

Δt :

time step size (s)

t c :

thickness of CNT (nm)

\(T^{h} ({\mathbf{r}})\) :

MLS approximation function for temperature

w :

weight function used in MLS approximation

\(\bar{w}\) :

weighting function used in weak form

α:

penalty parameter

β 2 :

matrix thermal conductivity parameter

β′2 :

nanotube thermal conductivity parameter

Γ:

boundary of the domain

Ω m :

computational domain for matrix

Ω c :

computational domain for nanotube

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Thostensona ET, Renb Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  3. Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–75

    Article  Google Scholar 

  4. Rafii-Tabar H (2004) Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys Rep 390:235–452

    Article  Google Scholar 

  5. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43:61–102

    Article  Google Scholar 

  6. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–532

    Article  Google Scholar 

  7. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645

    Article  Google Scholar 

  8. Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43

    Article  Google Scholar 

  9. Shen S, Atluri SN (2004) Computational nano-mechanics and multi-scale simulation. Comput Mater Contin 1:59–90

    Google Scholar 

  10. Khare R, Bose S (2005) Carbon nanotube based composites- a review. J Miner Mater Charact Eng 4:31–46

    Google Scholar 

  11. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single walled nanotubes. Phys Rev B 59:2514–2516

    Article  Google Scholar 

  12. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurement of individual multiwalled nanotubes. Phys Rev Lett 87:215502-1

    Google Scholar 

  13. Berber S, Kwon YK, Tomanek D (2000) Unsually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  14. Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single walled carbon nanotube. Nanotechnology 12:21–24

    Article  Google Scholar 

  15. Zheng Q, Su G, Wang J, Guo H (2002) Thermal conductance for single wall carbon nanotubes. Eur Phys J B 25:233–238

    Article  Google Scholar 

  16. Zhou W, Vavro J, Ramesh S, Guthy C, Winey KI, Fischer JE (2004) Single walled carbon nanotube fibers extruded from super acid suspensions: preferred orientation, electrical and thermal transport. J Appl Phys 95:649–655

    Article  Google Scholar 

  17. Yi W, Lu L, Dian-lin Z, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59:9015–9018

    Article  Google Scholar 

  18. Xie S, Li W, Pan Z, Chang B, Sun L (2000) Mechanical and physical properties of carbon nanotube. J Phys Chem Solids 61:1153–1158

    Article  Google Scholar 

  19. Moreland JF, Freund JB, Chen G (2004) The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microscale Thermophys Eng 8:61–69

    Article  Google Scholar 

  20. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668

    Article  Google Scholar 

  21. Hone J, Lliaguno MC, Biercuk MJ, Johnson AT, Battlogg B, Benes Z, Fischer JE (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A 74:339–343

    Article  Google Scholar 

  22. Lasjaunias JC (2003) Thermal properties of carbon nanotubes. Comptes Rendus Physique 4:1047–1054

    Article  Google Scholar 

  23. Xu Y, Ray G, Magid BA (2006) Thermal behavior of single walled carbon nanotube polymer-matrix composites. Compos Part A 37:114–121

    Article  Google Scholar 

  24. Nishimura N, Liu YJ (2004) Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation method. Comput Mech 35:1–10

    Article  MATH  Google Scholar 

  25. Zhang J, Tanaka M, Matsumoto T, Guzik A (2004) Heat conduction analysis in bodies containing thin walled structures by means of hybrid BNM with an application to CNT-based composites. JSME Int J 47:181–188

    Article  Google Scholar 

  26. Zhang J, Tanaka M, Matsumoto T (2004) A simplified approach for heat conduction analysis of CNT-based nano composites. Comput Methods Appl Mech Eng 193:5597–5609

    Article  MATH  Google Scholar 

  27. Singh IV, Tanaka M, Endo M (2006) Thermal analysis of CNT-based nano-composites by element free Galerkin method. Comput Mech http://dx.doi.org/10.007/s00466-006-0061-x.

  28. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  29. Sohlberg K, Sumpter BG, Tuzun RE, Noid DW (1998) Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures. Nanotechnology 9:30–36

    Article  Google Scholar 

  30. Govindjee S, Sackman JL (1999) On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun 110:227–230

    Article  Google Scholar 

  31. Ru CQ (2000) Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys Rev B 62:16962–16967

    Article  Google Scholar 

  32. Srivastava D, Menon M, Cho K (2001) Computational nanotechnology with carbon nanotubes and fullerenes. Comput Sci Eng 3:42–55

    Article  Google Scholar 

  33. Liu YJ, Chen XL (2003) Evaluations of the effective materials properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech Mater 35:69–81

    Article  Google Scholar 

  34. Chen XL, Liu YJ (2004) Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput Mater Sci 29:1–11

    Article  Google Scholar 

  35. Harik VM (2002) Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comput Mater Sci 24:328–342

    Article  Google Scholar 

  36. Liu YJ, Chen XL (2003) Continuum models of carbon nanotube-based composites by the BEM. Electron J Bound Elem 1:316–335

    MathSciNet  Google Scholar 

  37. Liu Y, Nishimura N, Otani Y (2005) Large-scale modeling of carbon-nanotube composites by fast multipole boundary element method. Comput Mater Sci 34:173–187

    Article  Google Scholar 

  38. Kireitseu M, Kompis V, Altenbach H, Bochkareva V, Hui D, Eremeev S (2005) Continuum mechanics approach and computational modelling of submicrocrystalline and nanoscale materials. Fuller Nanotub Carbon Nanostruct 13:313–329

    Article  Google Scholar 

  39. Tserpesa KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos Part B 36:468–477

    Article  Google Scholar 

  40. Ashrafi B, Hubert P (2006) Modeling the elastic properties of carbon nanotube array/polymer composites. Compos Sci Technol 66:387–396

    Article  Google Scholar 

  41. Reese W (1966) Temperature dependence of the thermal conductivity of amorphous polymers: polymethyl methacrylate. J Appl Phys 37:3227–3230

    Article  Google Scholar 

  42. Dashora P, Gupta G (1996) On the temperature dependence of the thermal conductivity of linear amorphous polymers. Polymer 37:231–234

    Article  Google Scholar 

  43. Barucci M, Olivieri E, Pasca E, Risegari L, Ventura G (2005) Thermal conductivity of Torlon between 4.2 and 300 K. Cryogenics 45:295–299

    Article  Google Scholar 

  44. Singh IV, Sandeep K, Prakash R (2004) Application of meshless element free Galerkin method in two-dimensional heat conduction problems. Comput Assist Mech Eng Sci 11:265–274

    MATH  Google Scholar 

  45. Singh IV (2006) Thermal solution of cylindrical composite systems using meshless method. Heat Mass Transf 42:689–707

    Article  Google Scholar 

  46. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514–R2516

    Article  Google Scholar 

  47. Yi W, Lu L, Dian-lin Z, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59:R9015–R9018

    Article  Google Scholar 

  48. Gao G, Cagin T, Goddard WA III (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9:184–191

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CLUSTER of Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra Vir Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, I.V., Tanaka, M. & Endo, M. Meshless method for nonlinear heat conduction analysis of nano-composites. Heat Mass Transfer 43, 1097–1106 (2007). https://doi.org/10.1007/s00231-006-0194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0194-7

Keywords

Navigation