Skip to main content
Log in

Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) solutions of turbulent convective heat transfer problems based on the mass, momentum and energy conservation principle provide all information to calculate the entropy production rate in such a transfer process. It can be determined in the post processing phase of a CFD calculation. Two methods are discussed in detail which can provide the information about the entropy production with different degrees of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Area (m2)

c f :

Skin friction coefficient

c p :

Specific heat (J/kg K)

D :

Diameter (m)

L :

Length (m)

\(\dot m\) :

Mass flux (kg/s)

Nu :

Nusselt number

Pr :

Prandtl number

q :

Heat flux density (W/m2)

Re :

Reynolds number

R :

Gas constant (m2/s2 K)

s :

Specific entropy (J/kg K)

T :

Temperature (K)

t :

Time (s)

u, v, w :

Velocity components (m/s)

V :

Volume (m3)

x, y, z :

Cartesian coordinates

α:

Thermal diffusivity (m2/s)

α t :

Turbulent thermal diffusivity (m2/s)

ɛ:

Turbulent dissipation rate (m2/s3)

η:

Viscosity (kg/ms)

λ:

Thermal conductivity (W/mK)

Φ:

Dissipation of mech. energy (W/m3)

ΦΘ :

Loss of mech. energy (WK/m3)

\(\varrho\) :

Density (kg/m3)

S PRO, i :

Entropy production rate (W/K m3)

References

  • Bejan A (1978) General criterion for rating heat-exchanger performance. Int J Heat Mass Transfer 21:655–658

    Article  Google Scholar 

  • Bejan A (1996) Entropy generation minimization. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Casey M, Wintergerste T (eds) (2000) ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD-Best Practice Guidelines, ERCOFTAC Publications (http://www.ercoftac.org)

  • Herwig H (2000) Was ist Entropie? Eine Frage–Zehn Antworten. Forschung im Ingenieurwesen 66:74–78

    Article  Google Scholar 

  • Hölling M, Herwig H (2004) CFD-today: Anmerkungen zum kritischen Umgang mit kommerziellen Software-Programmpaketen. Forschung im Ingenieurwesen 68:150–154

    Article  Google Scholar 

  • Kock F (2003) Bestimmung der lokalen Entropieproduktion in turbulenten Strömungen und deren Nutzung zur Bewertung konvektiver Transportprozesse. Dissertation, TU Hamburg-Harburg

  • Kock F, Herwig H (2004a) Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions. Int J Heat Mass Transfer 47:2205–2215

    Article  MATH  Google Scholar 

  • Kock F, Herwig H (2004b) Entropy production for turbulent shearflows and their implementation in CFD codes. In: Proceedings of the international symposium on advances in comp heat transfer, Norway April 19–24, paper CHT-04-112

  • Spurk JH (1989) Strömungslehre. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Zhang YM, Hang J, Lee C (1997) Heat transfer and friction characteristics of turbulent flow in circular tubes with twisted-tape inserts and axial interrupted ribs. Enhanced Heat Transfer 4:297–308

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herwig.

Appendix

Appendix

1.1 Wall functions for \(S^{+}_{{\rm PRO}, {\bar D}} \hbox{ and } S^{+}_{{\rm PRO},{\bar C}}\)

The general form we assume for these two wall functions with respect to the mean profiles is

$$S^{+}_{{\rm PRO},i} = {A_i}\,\exp\,\left[-b_i \left(y^{+}- a_{i}\right)^{2}\right]; \quad i={\bar D}, {\bar C}.$$
(16)

In Kock (2003) the constants are determined from asymptotic considerations (y + → 0) and DNS data. They are listed Table 1.

Table 1 Constants in the wall functions for \(S_{{\rm PRO},\overline D} \hbox{ and }S_{{\rm PRO},\overline C}.\;T_{\tau} = -q_w/\varrho c_p u^2_{\tau};\; \hbox{Ec}_{\tau}=u^2_{\tau}/c_pT_{\tau};\; u_{\tau}=\sqrt{\tau_w {\text{/}}\varrho}\)

The wall distances\(y^{+}_{\ln {\bar D}} \hbox{ and } y^{+}_{\ln {\bar C}}\) correspond to the intersection of the asymptotic representation of the velocity and temperature profiles, respectively, for y + → 0 and y + → ∞. They are \(y^{+}_{\ln {\bar D}}= 11.6 \hbox{ and } y^{+}_{\ln {\bar C}} = 12.1\) for Pr = 0.71 and \(y^{+}_{\ln {\bar C}} = 7.3\) for Pr = 5, respectively.

In order to find a representative value of the entropy production in the wall adjacent volume of finite volume approach, (16) is integrated over this volume. At a distance y + mp (mp: midpoint, centre of the volume) we thus get:

$$S^{+}_{{\rm PRO},{\bar D} mp} = \frac{1}{2y^{+}_{mp}} \left( \frac{A_{\overline D}}{2} \sqrt{\frac{\pi}{b_{\overline D}}} \times \left[ \hbox{erf} \left( \sqrt{b_{\bar D}} 2y^{+}_{mp} - \sqrt{b_{\overline D}}{a_{\overline D}}\right) - \hbox{erf} \left(-\sqrt{b_{\overline D}}{a_{\overline D}}\right)\right]\right),$$
(17)
$$S^{+}_{{\rm PRO},{\bar C} mp} = \frac{1}{2y^{+}_{mp}} \left( \frac{A_{\bar C}} {2} \sqrt{\frac{\pi}{b_{\bar C}}} \times \left[ \hbox{erf} \left(\sqrt{b_{\bar C}} 2y^{+}_{mp} - \sqrt{b_{\overline C}}{a_{\overline C}}\right) - \hbox{erf} \left(-\sqrt{b_{\overline C}}{a_{\overline C}}\right)\right]\right).$$
(18)

1.2 Wall functions for \(S^{+}_{{\rm PRO},{\ D}^{\prime}} \hbox{ and } S^{+}_{{\rm PRO},{\ C}^{\prime}}\)

These wall functions are found by patching the asymptotic representations at their intersection points \(y^{+}_{\ln {\bar D}} \hbox{ and } y^{+}_{\ln {\bar C}},\) respectively.

After an integration over the wall adjacent finite volume the midpoint values for the entropy production are

$$\begin{aligned} S^+_{{\rm PRO},D^{\prime} mp} &= \frac{1}{2y^+_{mp}} \left[0.15 Ec_{\tau} \frac{T_w}{T_{\tau}} y^+_{\ln \overline D} \right.\\ &\quad\left.+ Ec_{\tau} \frac{T_w^2}{T_{\tau}^2} \frac{1}{\kappa} \times \left[ \log \left\{ 1 + \frac{T_{\tau}}{T_w} \left( \log (2 y^+_{mp}) + C^+_{\bar D}\right)\right.\right.\right.\\ &\left.\left.\left.\quad- \log \left(1 + \frac{T_{\tau}}{T_w} \left( \log (y^+_{\ln \overline D}) + C^+_{\bar D}\right)\right )\right\} \right ] \right], \end{aligned}$$
(19)
$$\begin{aligned}S^+_{{\rm PRO},C^{\prime} mp} &= \frac{1}{2y^+_{mp}} \left[\vphantom{\frac{1}{T_{\tau}/{T_w} + \log \left(y^+_{\ln \overline C}\right) + C^+_{\overline C}}} 0.15\,Pr y^+_{\ln \overline C}\right.\\&\left.\quad + \frac{1}{T_{\tau}/{T_w} + \log \left(y^+_{\ln \overline C}\right) + C^+_{\overline C}} - \frac{1}{T_{\tau}/{T_w} + \log \left({2 y^+_{mp}}\right) + C^+_{\overline C}}\right].\end{aligned}$$
(20)

with \(C^+_{\overline D} = 5.0 \hbox{ and } C^+_{\overline C} = 13.7\,Pr^{2/3}-7.5.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herwig, H., Kock, F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems. Heat Mass Transfer 43, 207–215 (2007). https://doi.org/10.1007/s00231-006-0086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0086-x

Keywords

Navigation