Skip to main content
Log in

Lattice Boltzmann model for nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choi SUS (1995) Enhancement thermal conductivity of fluids with nanoparticles. FED-vol 231/MD-vol 66:99–103

    Google Scholar 

  2. Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13:474–480

    CAS  Google Scholar 

  3. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121:280–289

    CAS  Google Scholar 

  4. Xuan Y, Li Q (2000) Transfer enhancement of nanofluids. Int J Heat Flow 21:58–64

    Article  CAS  Google Scholar 

  5. Xuan Y, Roetzel W (2000) Conception for heat transfer correlation of nanofluids. Int J Heat Mass Transfer 43:3701–3707

    Article  CAS  Google Scholar 

  6. Tien CL, Majumdar A, Gerner FM (1998) Microscale energy transport. Taylor Francis, London

    Google Scholar 

  7. Berman R (1976) Thermal conduction in solids. Clarendon, Oxford

    Google Scholar 

  8. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice boltzmann models. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819

    Article  Google Scholar 

  10. Shan X, Doolen G (1996) Diffusion in a multicomponent lattice Boltzmann equation model. Phys Rev E 54:3614–3620

    Article  CAS  Google Scholar 

  11. Vahala L, Wah D, Vahala G, Carter J, Pavlo P (2000) Thermal lattice Boltzmann simulation for multispecies fluid equilibration. Phys Rev E 62:507–514

    Article  CAS  Google Scholar 

  12. Yang ZL, Dinh TN, Nourgaliev RR, Sehgal BR (2000) Evaluation of the Darcy’s law performance for two-fluid hydrodynamics in a particle debris bed using a Lattice-Boltzmann model. Heat Mass Transfer 36:295–304

    Article  CAS  Google Scholar 

  13. Shan X, Doolen G (1995) Multicomponent Lattice-Boltzmann with interparticle interaction. J Statistical Phys 81:379–393

    Google Scholar 

  14. He X, Luo LS (2001) Theory of the Lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56:6811–6817

    Article  Google Scholar 

  15. Buick JM, Greated CA (2000) Gravity in a Lattice Boltzmann model. Phys Rev E 61:5307–5320

    Article  CAS  Google Scholar 

  16. Shan X (1997) Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys Rev E 146:2780–2788

    Article  Google Scholar 

  17. White DM, Halliday I, Care CM, Stevens A, Thompson A (2000) An enhanced Bhatnagar-Gross-Krook method for Boussinesq flow. Physica D 141:199–213

    Article  Google Scholar 

  18. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersion. Cambridge University Press, Cambridge

    Google Scholar 

  19. Inamuro T, Yoshino M, Ogino F (1995) A non-slip boundary condition for Lattice Boltzmann simulations. Phys fluids 7:2928–2930

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (50176018) and Specialized Research Fund for the Doctoral Program of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, Y., Yao, Z. Lattice Boltzmann model for nanofluids. Heat Mass Transfer 41, 199–205 (2005). https://doi.org/10.1007/s00231-004-0539-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-004-0539-z

Keywords

Navigation