Skip to main content
Log in

Soret effect and slow mass diffusion as a catalyst for overstability in Marangoni-Bénard flows

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract.

We study the onset of time dependent Marangoni-Bénard convection in binary mixtures subject to Soret effect by numerical computation of linear instability thresholds in infinite fluid layers and two-dimensional boxes. The calculations are done for positive Marangoni numbers (Ma > 0) and negative Marangoni Soret parameters SM = –(DSγc)/(DγT) where DS and D are the Soret and mass diffusion coefficients, respectively, and γT, γc are the first derivatives of the surface tension with respect to temperature and concentration. Our purpose is to understand why for particular choices of Prandtl and Schmidt numbers, the increase of the stabilizing solutal contribution leads to a decrease of the critical temperature difference, a phenomenon already reported by Chen & Chen [5] and Skarda et al. [12] For various choices of Prandtl and Schmidt numbers we analyze the evolution of the critical Marangoni number Mac, critical wavenumber kc and angular frequency ωc with SM and compute the corresponding eigenvectors. We next propose a physical mechanism which explains how the stabilizing solutal contribution acts as a catalyst for overstability. Finally, we extend our results to two dimensional boxes of small aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Castillo, J.L. & Velarde, M.G.: Thermal diffusion and the Marangoni instability of a two component fluid layer heated from below.: Phys. Letters 66A (1978) 489–491

  2. Castillo, J.L. & Velarde, M.G.: Buoyancy-thermocapillary instability: The role of interfacial deformation in one- and two-component fluid layers heated from below or above. J. Fluid Mech. 125 (1982) 463–474

    Article  MATH  Google Scholar 

  3. Van Vaerenbergh, S., Colinet, P., Georis, Ph. & Legros, J.C.: Preparatory results for a Marangoni-Bénard experiment with Soret effect in micro-gravity conditions. Unpublished (1991)

  4. Henry, D., Ben Hadid, H., Van Vaerenbergh, S., Legros, J.C. & Roux, B.: Marangoni-Bénard instabilities in liquid mixtures with Soret effect. Proceedings of the VIIIth European Symposium on Materials and Fluid Sciences in Microgravity ESA SP 333 (1992) 717–721

  5. Chen, C.F. & Chen, C.C.: Effect of surface tension on the stability of a binary fluid layer under reduced gravity. Phys. Fluids 6 (1994) 1482–1490

    Article  MATH  Google Scholar 

  6. Bhattacharjee J.K.: Marangoni convection in binary liquids. Phys. Rev. E 50 2 (1994) 1198–1204

    Article  Google Scholar 

  7. Joo, S.C.: Marangoni instabilities in liquid mixtures with Soret effects. J. Fluid Mech 293 (1995) 127–145

    Article  MATH  Google Scholar 

  8. Bergeon, A., Henry, D. & BenHadid, H.: Marangoni-Bénard instability in microgravity conditions with Soret effect. Int. J. Heat Mass Transfer 37 (1994) 1545–1562

    Article  MATH  Google Scholar 

  9. Bergeon, A., Henry, D., BenHadid, H. & Tuckerman, L.S.: Stability analysis of Marangoni convection in binary mixtures subjected to the Soret effect. ASME HTD 290 (1994) 63–69

    Google Scholar 

  10. Bergeon, A., Henry, D. & BenHadid, H.: Analytical linear stability analysis of Marangoni instability with Soret effect. Microgravity Quarterly 5 (1995) 123–129

    Google Scholar 

  11. Bergeon, A., Henry, D., BenHadid, H. & Tuckerman, L.S.: Marangoni convection in binary mixtures with Soret effect. J. Fluid Mech. 375 (1998) 143–177

    Article  MATH  Google Scholar 

  12. Skarda, J.R.L., Jacqmin, D. & McCaughan, F.E.: Exact and approximate solutions to the double-diffusive Marangoni-Bénard problem with cross-diffusive terms. J. Fluid Mech. 366 (1998) 109–133

    Article  MATH  Google Scholar 

  13. Slavtchev, S., Simeonov, G., Van Vaerenbergh, S. & Legros, J.C.: Marangoni instability of a layer of binary liquid in the presence of nonlinear Soret effect. Int. J. Heat Mass Transfer 42 15 (1999) 3007–3011

    Article  MATH  Google Scholar 

  14. Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4 (1958) 489–500

    Article  MATH  Google Scholar 

  15. De Groot, S.R. & Mazur, P.: Non Equilibrium thermodynamics. North Holland, Amsterdam, 1969

  16. Kolodner, P., Williams, H. & Moe, C.: Optical measurement of the Soret coefficient of ethanol/water solution. J. Chem. Phys. 88 (1988) 6512

    Article  Google Scholar 

  17. Seydel, R.: Pratical Bifurcation and Stability Analysis. From equilibrium to chaos. Interdisciplinary Applied Mathematics 5 IAM, Springer-Verlag, 1994

  18. Funaro, D.: Polynomial approximation of differential equations. Lecture notes in Physics m8, Springer-Verlag, 1991

  19. Bernardi, C. & Maday, Y.: Approximations spectrales de problèmes aux limites elliptiques. Mathématiques & Applications 10, Springer-Verlag, 1992

  20. Tuckerman, L.S.: Steady-state solving via Stokes preconditioning; Recursion relations for elliptic operators. In Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics, edited by D.L. Dwoyer, M.Y. Hussaini & R.G. Voigt, Springer-Verlag, 1989

  21. Mamun, C.K. & Tuckerman, L.S.: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7 (1995) 80–91

    Article  MathSciNet  MATH  Google Scholar 

  22. Knobloch, E. & Moore, D.R.: Linear stability analysis of experimental Soret convection. Phys. Rev. A. 37 (1988) 860–870

    Article  Google Scholar 

  23. Henry, D. & Roux, B.: Soret separation in a quasi-vertical cylinder. J. Fluid Mech. 195 (1988) 175–200

    Article  Google Scholar 

  24. Acheson, D.J.: Stable density stratification as a catalyst for instability. J. Fluid Mech 96, 723–733, 1980

    Article  Google Scholar 

  25. Net, M., Mercader, I. & Knobloch, E.: Binary fluid convection in a rotating cylinder. Phys. Fluids 7 (1995) 1553–1567

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bergeon.

Appendix A

Appendix A

In the following, and for simplicity we drop the star from the notation and denote with the subscripts r and i the real and imaginary parts of the unknown functions respectively. Replacing the expansion of the variables into the linearized equations and identifying the real and imaginary parts of the resulting set of equations, we get the following ordinary differential equations:

$$ \eqalign{u^{\prime\prime}_r - k^2 u_r + kp_i = - \omega u_i, \cr u^{\prime\prime}_i - k^2 u_i - kp_r = \omega u_r, \cr w^{\prime\prime}_r - k^2 w_r - p^\prime_r = - \omega w_i , \cr w^{\prime\prime}_i - k^2 w_i - p^\prime_i = \omega w_r,} $$
$$\eqalign{- ku_i + w^\prime_r = 0, \cr ku_r + w^\prime_i = 0,} $$
$$\eqalign{ - Ma\,w_r + Pr^{-1} (T^{\prime \prime}_r - k^2 T_r) = - \omega T_i, \cr - Ma\,w_i + Pr^{-1} (T^{\prime \prime}_i - k^2 T_i) = \omega T_r,} $$
$$\eqalign{ - Ma\,w_r + Sc^{-1} (c^{\prime \prime}_r - T^{\prime \prime}_r - k^2 (c_r - T_r)) = -\omega c_i, \cr -Ma\,w_i + Sc^{-1} (c^{\prime \prime}_i - T^{\prime \prime}_i - k^2 (c_i - T_i)) = \omega c_r,} $$

along with the boundary conditions:

$$ u^{\prime}_r (1) + Pr^{-1} k(T_i (1) + S_M c_i (1)) = u^{\prime}_i (1) - Pr^{-1} k(T_r (1) + S_M c_r (1)) = u_r (0) = u_i (0) = 0, $$
$$ w_r (1) = w_i (1) = w_r (0) = w_i (0) = 0, $$
$$ \eqalign{p^{\prime}_r (1) + k^2 w_r (1) - w^{\prime\prime}_r (1) = p^{\prime}_i (1) + k^2 w_i (1) - w^{\prime\prime}_i (1) = p^{\prime}_r (0) + k^2 w_r (0) - w^{\prime\prime}_r (0) \cr = p^{\prime}_i (0) + k^2 w_i (0) - w^{\prime\prime}_i (0) = 0,} $$
$$ T_r (0) = T_i (0) = T^{\prime}_r (1) = T^{\prime}_i (1) = 0, $$
$$ T^{\prime}_r (0) - c^{\prime}_r (0) = T^{\prime}_i (0) - c^{\prime}_i (0) = T^{\prime}_r (1) - c^{\prime}_r (1) = T^{\prime}_i (1) - c^{\prime}_i (1) = 0. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeon, A., Mollaret, R. & Henry, D. Soret effect and slow mass diffusion as a catalyst for overstability in Marangoni-Bénard flows. Heat and Mass Transfer 40, 105–114 (2003). https://doi.org/10.1007/s00231-002-0373-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-002-0373-0

Keywords

Navigation