Skip to main content
Log in

A characterization of the disk by eigenfunction of the Steklov eigenvalue

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Suppose M is homeomorphic to 2-dimensional sphere and let \(f_i\), \(1\le i\le 3\), be the first eigenfunctions of the Laplacian on M. Cheng proved (Proc Am Math Soc 55(2):379–381, 1976) that if \(\sum _{i=1}^3 f_i^2\) is a constant, then M is isometric to a sphere of constant curvature. In view of the similarities between eigenvalues of the Laplacian and Steklov eigenvalue, we study eigenfuction of the first nonzero Steklov eigenvalue of a 2-dimensional compact manifold with boundary \(\partial M\). Suppose M is a domain equipped with the flat metric g, and let f be an eigenfunction of the first nonzero Steklov’s eigenvalue. We prove that if \(\nabla _g f\) is parallel along \(\partial M\), the Lie bracket of the vector field orthogonal to \(\nabla _g f\) and the tangent to \(\partial M\) is zero, and \(|\nabla _g f|^2\) is constant in M, then (Mg) is isometric to the disk equipped with the flat metric. We also prove that if the eigenfunctions \(f_1, f_2\) corresponding to the first nonzero Steklov eigenvalue satisfy that \(f_1^2+f_2^2\) is constant on \(\partial M\) and \(\varphi _*(g)\) is a Riemannian metric conformal to the flat metric of \(D^2\) where \(\varphi =(f_1,f_2)\), then (Mg) is isometric to the disk equipped with the flat metric. In another direction, we prove that a simply connected domain in the hyperbolic space \(\mathbb {H}^3\) such that its Steklov eigenvalues are the same as a geodesic ball must be isometric to the geodesic ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, S.Y.: A characterization of the 2-sphere by eigenfunctions. Proc. Am. Math. Soc. 55, 379–381 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261, 1384–1399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. do Carmo, M., Lawson, B.: On Alexandrov–Bernstein theorems in hyperbolic space. Duke Math. J. 50, 995–1003 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. El Soufi, A., Giacomini, H., Jazar, M.: A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J. 135, 181–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. El Soufi, A., Ilias, S.: Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pac. J. Math. 195, 91–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fraser, A., Schoen, R.: Minimal surfaces and eigenvalue problems. In: Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations, 105–121, Contemp. Math., 599, Am. Math. Soc., Providence, RI, (2013)

  7. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226, 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Girouard, A., Parnovski, L., Polterovich, I., Sher, D.: The Steklov spectrum of surfaces: asymptotics and invariants. Math. Proc. Camb. Philos. Soc. 157, 379–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem. preprint. arXiv:1411.6567

  10. Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Hassannezhad, A.: Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261, 3419–3436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B. 270, 1645–1648 (1970)

    MathSciNet  MATH  Google Scholar 

  13. Ho, P.T.: Differentiable rigidity of hypersurface in space forms. Manuscr. Math. 146, 463–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jakobson, D., Levitin, M., Nadirashvili, N., Nigam, N., Polterovich, I.: How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. 63, 3967–3985 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jakobson, D., Nadirashvili, N., Polterovich, I.: Extremal metric for the first eigenvalue on a Klein bottle. Can. J. Math. 58, 381–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, 269–291 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nadirashvili, N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6, 877–897 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Polterovich, I., Sher, D.: Heat invariants of the Steklov problem. J. Geom. Anal. 25, 924–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pak Tung Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, P.T. A characterization of the disk by eigenfunction of the Steklov eigenvalue. manuscripta math. 154, 297–307 (2017). https://doi.org/10.1007/s00229-017-0916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0916-9

Mathematics Subject Classification

Navigation