Skip to main content

Advertisement

Log in

On the Hong–Krahn–Szego inequality for the p-Laplace operator

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Given an open set Ω, we consider the problem of providing sharp lower bounds for λ 2(Ω), i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong–Krahn–Szego inequality, asserting that the disjoint unions of two equal balls minimize λ 2 among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = ∞ are considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Fusco N.: Regularity of minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140, 115–135 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anane A., Tsouli N.: On the second eigenvalue of the p-Laplacian, nonlinear partial differential equations (Fés 1994). Pitman Res. Notes Math. Ser 343, 1–9 (1996)

    MathSciNet  Google Scholar 

  3. Belloni M., Kawohl B.: A direct uniqueness proof for equations involving the p-Laplace operator. Manuscr. Math. 109, 229–231 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhattacharya T.: Some observations on the first eigenvalue of the p-Laplacian and its connections with asymmetry. Electron. J. Differ. Equ. 35, 15 (2001)

    Google Scholar 

  5. Bhattacharya T., Weitsman A.: Estimates for Green’s function in terms of asymmetry. AMS Contemp. Math. Ser. 221, 31–58 (1999)

    Article  MathSciNet  Google Scholar 

  6. Binding P.A., Rynne B.P.: Variational and non-variational eigenvalues of the p-Laplacian. J. Differ. Equ. 244, 24–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brasco, L., Franzina, G.: A note on positive eigenfunctions and hidden convexity. Arch. Math. (Basel) (2012). http://hal.archives-ouvertes.fr/hal-00706164

  8. Brasco L., Pratelli A.: Sharp stability of some spectral inequalities. Geom. Funct. Anal. 22, 107–135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucur, D.: Minimization of the k−th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. (2012). doi:10.1007/s00205-012-0561-0

  10. Cuesta M., De Figueiredo D.G., Gossez J.P.: A nodal domain property for the p-Laplacian. C. R. Acad. Sci. Paris 330, 669–673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuesta M., De Figueiredo D.G., Gossez J.P.: The beginning of the Fuĉik spectrum for the p-Laplacian. J. Differen. Equ. 159, 212–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drábek P., Takáč P.: On variational eigenvalues of the p-Laplacian which are not of Ljusternik–Schnirelmann type. J. Lond. Math. Soc. 81, 625–649 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. DiBenedetto E.: C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figalli A., Maggi F., Pratelli A.: A note on Cheeger sets. Proc. Am. Math. Soc. 137, 2057–2062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fridman V., Kawohl B.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Fučik S., Nečas J., Souček J., Souček V.: Spectral Analysis of Nonlinear Operators. Lecture Notes in Mathematics, vol. 346. Springer, Berlin (1973)

    Google Scholar 

  17. Fusco N., Maggi F., Pratelli A.: Stability estimates for certain Faber–Krahn. Isocapacitary and Cheeger inequalities. Ann. Sci. Norm. Super. Pisa Cl. Sci. 8, 51–71 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Hansen W., Nadirashvili N.: Isoperimetric inequalities in potential theory. Potential Anal. 3, 1–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. García J.P.A., Alonso I.P.: Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Commun. Partial Differ. Equ. 12, 1389–1430 (1987)

    MATH  Google Scholar 

  20. Henrot A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)

    Google Scholar 

  21. Hong I.: On an inequality concerning the eigenvalue problem of membrane. Kōdai Math. Sem. Rep. 6, 113–114 (1954)

    Article  Google Scholar 

  22. Juutinen P., Lindqvist P.: On the higher eigenvalues for the ∞-eigenvalue problem. Calc. Var. Partial Differ. Equ. 23, 169–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kennedy J.B.: On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians. Z. Angew. Math. Phys. 61, 781–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krahn E.: Über Minimaleigenschaften der Krugel in drei un mehr Dimensionen. Acta Commun. Univ. Dorpat. A9, 1–44 (1926)

    Google Scholar 

  25. Lindqvist P.: On a nonlinear eigenvalue problem. Bericht 68, 33–54 (1995)

    MathSciNet  Google Scholar 

  26. Mazzoleni, D. Pratelli, A.: Existence of minimizers for spectral problems, preprint (2011). http://arxiv.org/abs/1112.0203. Accessed 1 Dec 2011

  27. Melas A.: The stability of some eigenvalue estimates. J. Differ. Geom. 36, 19–33 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Parini, E.: The second eigenvalue of the p-Laplacian as p goes to 1. Int. J. Differ. Equ. (2010); Article ID 984671, 23 pp. doi:10.1155/2010/984671

  29. Pólya G.P.: On the characteristic frequencies of a symmetric membrane. Math. Zeitschr. 63, 331–337 (1955)

    Article  MATH  Google Scholar 

  30. Povel T.: Confinement of Brownian motion among Poissonian obstacles in \({\mathbb{R}^d, d\ge 3}\) . Probab. Theory Relat. Fields 114, 177–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasco, L., Franzina, G. On the Hong–Krahn–Szego inequality for the p-Laplace operator. manuscripta math. 141, 537–557 (2013). https://doi.org/10.1007/s00229-012-0582-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0582-x

Mathematics Subject Classifications (1991)

Navigation