Skip to main content
Log in

Heat kernel estimates for the \({{\bar{\partial}}}\) -Neumann problem on G-manifolds

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We prove heat kernel estimates for the \({\bar{\partial}}\) -Neumann Laplacian \({\square}\) acting in spaces of differential forms over noncompact manifolds with a Lie group symmetry and compact quotient. We also relate our results to those for an associated Laplace-Beltrami operator on functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander R., Alexander S.: Geodesics in Riemannian manifolds with boundary. Indiana Univ. Math. J. 30(4), 481–488 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beals R., Greiner P.C., Stanton N.K.: The heat equation on a CR manifold. J. Diff. Geom. 20, 343–387 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Beals R., Stanton N.K.: The heat equation for the \({{\bar{\partial}}}\) -Neumann problem. I. Comm. Part. Diff. Eq. 12, 351–413 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Beals R., Stanton N.K.: The heat equation for the \({{\bar{\partial}}}\) -Neumann problem. II. Canad. J. Math. 40, 502–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergh J., Löfström J.: Interpolation spaces: an introduction. Springer, New York (1976)

    Book  MATH  Google Scholar 

  6. Biroli M., Mosco U.: A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl., IV. Ser. 169, 125–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boggess, A., Raich, A.: Heat kernels, smoothness estimates and exponential decay, (arXiv:1004.0193) (2010)

  8. Boggess A., Raich A.: The \({{\square_b}}\) -heat equation on quadric manifolds. J. Geom. Anal. 21, 256–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Catlin D.: Subelliptic estimates for the \({{\bar{\partial}}}\) -Neumann problem on pseudoconvex domains. Ann. Math. 126, 131–191 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Angelo J.P.: Real hypersurfaces, orders of contact, and applications. Ann. Math. 115, 615–637 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davies, E.B.: One-parameter Semigroups, London Mathematical Society Monographs, 15. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, New York (1980)

  12. Davies E.B.: Heat kernels and spectral theory. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  13. Dungey, N., ter Elst, A.F.M., Robinson, D.W.: Analysis on lie groups with polynomial growth, Progress in Mathematics, vol. 214. Birkhäuser Boston, Inc., Boston, MA (2003)

  14. Della Sala, G., Perez, J.J.: Unitary representations of unimodular Lie groups in Bergman spaces. Math. Z. (in press)

  15. Donnelly H., Li P.: Lower bounds for the eigenvalues of Riemannian manifolds. Michigan Math. J. 29, 149–161 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Driver B.K., Gross L., Saloff-Coste L.: Holomorphic functions and subelliptic heat kernels over Lie groups. J. Eur. Math. Soc. 11, 941–978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engliš M.: Pseudolocal estimates for \({{\bar\partial}}\) on general pseudoconvex domains. Indiana Univ. Math. J. 50, 1593–1607 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faris, William G.: Self-adjoint operators, Lecture Notes in Mathematics 433 Springer-Verlag, Berlin, New York (1975)

  19. Fefferman C.L., Sanchez-Calle A.: Fundamental solutions for second order subelliptic operators. Ann. Math. 124, 247–272 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy–Riemann complex, Ann. Math. Stud. 75 Princeton University Press, Princeton (1972)

  21. Folland G.B., Stein E.M.: Estimates for the \({{\bar{\partial}_b}}\) -complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27, 429–522 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fu S.: Hearing the type of a domain in \({{\mathbb{C}^2}}\) with the \({{\bar{\partial}}}\) -Neumann Laplacian. Dv. Math. 219, 568–603 (2008)

    MATH  Google Scholar 

  23. Fu S.: Hearing pseudoconvexity with the Kohn Laplacian. Math. Ann. 331, 475–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Goldstein J.A.: Semigroups of linear operators and applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1985)

    Google Scholar 

  25. Gol’dshtei˘n V.M., Kuz’minov V.I., Shvedov I.A.: Dual spaces to spaces of differential forms. Siberian Math. J. 27, 35–44 (1986)

    Article  MathSciNet  Google Scholar 

  26. Grauert H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. 68, 460–472 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  27. Greiner, P.C., Stein, E.M.: Estimates for the \({{\bar{\partial}}}\) -Neumann problem, Math. Notes. 19 Princeton Univ. Press, Princeton (1977)

  28. Grigor’yan, A.: Heat Kernel and analysis on manifolds, AMS/IP Studies. Adv. Math. 47, p. 498. AMS International Press, New York (2009)

  29. Gromov M.: Curvature, diameter, and betti numbers. Comment. Math. Helv. 56, 179–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gromov, M.: Structures métriques pour les variétés riemanniennes, Rédigés par J. Lafontaine et P. Pansu (ed.), Cedic/F.Nathan, Paris (1981)

  31. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser modern classics. Birkhäuser, Boston (2007)

  32. Gromov M., Henkin G., Shubin M.: Holomorphic L 2 functions on coverings of pseudoconvex manifolds. Geom. Funct. Anal. 8, 552– (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hartogs F.: Zur theorie der analytischen funktionen mehrerer unabhängiger Veränderlichen insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen forschreiten. Math. Ann. 62, 1–88 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  34. Heinzner, P., Huckleberry, A.T., Kutzschebauch, F.: Abels’ theorem in the real analytic case and applications to complexifications. In: Complex analysis and geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, pp. 229–273 (1995)

  35. Jerison D., Sanchez-Calle A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. J. Math. 35, 835–854 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kato, T.: Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132 Springer-Verlag Inc., New York (1966)

  37. Kobayashi, S.: Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15 Princeton University Press, Iwanami Shoten, Princeton, Tokyo (1987)

  38. Kodaira, K.: Complex manifolds and deformation of complex structures, Grundlehren der Mathematischen Wissenschaften 283, Springer-Verlag, New York (1986)

  39. Kohn J.J.: Harmonic Integrals on Strongly Pseudoconvex Manifolds, I. Ann. Math. 78, 112–148 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kohn J.J.: Harmonic integrals on strongly pseudoconvex manifolds, II. Ann. Math. 79, 450–472 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kohn J.J., Nirenberg L.: Non-coercive boundary value problems. Comm. Pure Appl. Math. 18, 443–492 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  42. Levi E.E.: Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. Mat. Pura Appl. 17, 61–87 (1910)

    Google Scholar 

  43. Levi E.E.: Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse. Ann. Mat. Pura Appl. 18(1), 69–79 (1911)

    Google Scholar 

  44. Lions, J.L., Magenes, E.: Non-homgeneous boundary value problems and applications. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 181 Springer-Verlag, Berlin (1972)

  45. McAvity D.M., Osborn H.: Asymptotic expansion of the heat kernel for generalized boundary conditions, Class. Quantum Grav. 8, 1445–1454 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Margulis G.A.: Discrete subgroups of semisimple lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 17. Springer-Verlag, Berlin (1991)

    Google Scholar 

  47. Métivier G.: Spectral asymptotics for the \({{\bar{\partial}}}\) -Neumann problem. Duke Math. J. 48, 779–806 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nagel A., Stein E.M., Wainger S.: Balls and metrics defined by vector fields. I: Basic Properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nash J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  50. Perez J.J.: The G-Fredholm property of the \({{\bar{\partial}}}\) -Neumann Problem. J. Geom. Anal. 19, 87–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Perez J.J.: The Levi problem on strongly pseudoconvex G-bundles, Ann. Global Anal. Geom. 37, 1–20 (2010)

    Article  MATH  Google Scholar 

  52. Perez J.J.: A transversal Fredholm property for the \({{\bar{\partial}}}\) -Neumann problem on G-bundles. Contemp. Math. 535, 187–193 (2011)

    Article  Google Scholar 

  53. Perez, J.J.: Generalized Fredholm properties for invariant pseudodifferential operators. Available at http://arxiv.org/pdf/1101.4614

  54. Perez J.J., Stollmann P.: Essential self-adjointness, generalized eigenforms, and spectra for the \({{\bar{\partial}}}\) -Neumann problem on G-manifolds. J. Funct. Anal. 261, 2717–2740 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Reed M., Simon B.: Methods of modern mathematical physics. I. Functional analysis. Academic Press Inc., New York (1980)

    MATH  Google Scholar 

  56. Raich A.: Heat equations and the weighted \({{\bar{\partial}}}\) -problem, (arXiv:0704.2768) (2009)

  57. Rosenberg S.: Semigroup domination and vanishing theorems. Contemp. Math. 73, 287–302 (1988)

    Article  Google Scholar 

  58. Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Diff. Geom. 36(2), 417–450 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Shubin, M.A.: Spectral theory of elliptic operators on noncompact manifolds, Astérisque. 207(5), 35–108 (1992). Méthodes semi-classiques, Vol. 1 (Nantes, 1991)

  60. Simon B.: Schrödinger semigroups. Bull. Amer. Math. Soc. 7, 447–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  61. Siu Y.-T.: Pseudoconvexity and the problem of Levi. Bull. Amer. Math. Soc. 84, 481–512 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stanton N.K.: The heat equation in several complex variables. Bull. Amer. Math. Soc. 11, 65–84 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  63. Stanton, N.K.: The heat equation for the \({{\bar{\partial}}}\) -Neumann problem in a strictly pseudoconvex Siegel domain. I, II, J. Analyse Math. 38: 67–112 (1980); 39: 189–202 (1981)

  64. Stanton N.K.: The solution of the \({{\bar{\partial}}}\) -Neumann problem in a strictly pseudoconvex Siegel domain. Invent. Math. 65, 137–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  65. Stanton N.K., Tartakoff D.S.: The heat equation for the \({{\bar{\partial}_b}}\) -Laplacian. Comm. Part. Diff. Eq. 9, 597–686 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  66. Stollmann P.: A dual characterization of length spaces with application to Dirichlet metric spaces. Studia Math. 198(3), 221–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Straube, E.J.: The L 2-Sobolev theory of the \({{\bar{\partial}}}\) -Neumann problem, ESI Lectures in Mathematics and Physics, EMS (2010)

  68. Sturm K.T.: Analysis on local dirichlet spaces. I: Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  MATH  Google Scholar 

  69. Sturm, K.T.: On the geometry defined by dirichlet forms. In: Seminar on stochastic analysis, random fields and applications, Ascona, 1993, (E. Bolthausen et al., eds.), vol 36, pp. 231–242 Progr. Probab., Birkhäuser, Boston (1995)

  70. ter Elst, A.F.M., Robinson, D.W., Sikora, A., Zhu, Y.: Dirichlet forms and degenerate elliptic operators. Partial differential equations and functional analysis, 73–95, Oper. Theory Adv. Appl. 168 Birkhäuser, Basel (2006)

  71. Wang, H.: L 2-index formula for proper cocompact group actions, preprint. http://arxiv.org/abs/1106.4542

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stollmann.

Additional information

Dedicated to Barry Simon in celebration of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, J.J., Stollmann, P. Heat kernel estimates for the \({{\bar{\partial}}}\) -Neumann problem on G-manifolds. manuscripta math. 138, 371–394 (2012). https://doi.org/10.1007/s00229-011-0496-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0496-z

Mathematics Subject Classification (2000)

Navigation