Skip to main content

Advertisement

Log in

Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is also used to manage seizures in glioblastoma patients. HDAC inhibitors can protect normal cells and tissues from the deleterious effects of radiotherapy, and VPA is reported to improve the survival of glioblastoma patients receiving chemoradiation therapy. VPA also promotes hair growth, and thus has the potential to reduce the radiotherapy side effect of hair loss while improving the survival of patients with glioblastoma. The purpose of this study was to determine whether VPA use during radiotherapy for high-grade glioma is associated with decreased side effects of radiotherapy and an improvement in overall survival (OS) and progression-free survival (PFS).

Methods

Medical records of 112 patients with high-grade glioma were retrospectively reviewed. We grouped patients by VPA use or non-use during radiotherapy, and evaluated hair loss, OS, and PFS.

Results

The radiation dose and fractionation at the onset of hair loss were 4 Gy and two fractions higher, respectively, in the VPA group compared with the VPA non-use group (P < 0.01). Median OS was 42.2 and 20.3 months in the VPA use and non-use groups, respectively (P < 0.01; hazard ratio [HR], 0.36; 95% confidence interval [CI], 0.18–0.74). Median PFS was 22.7 and 11.0 months in the VPA use and non-use groups, respectively (P = 0.099; HR, 0.62; 95% CI, 0.36–1.09).

Conclusions

VPA use during radiotherapy for glioma is associated with delayed hair loss and improvement in survival. Hair loss prevention benefits patients suffering from the deleterious effects of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/s1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  2. Balana C, Lopez-Pousa A, Berrocal A et al (2004) Phase II study of temozolomide and cisplatin as primary treatment prior to radiotherapy in newly diagnosed glioblastoma multiforme patients with measurable disease. A study of the Spanish medical neuro-oncology group (GENOM). J Neuro-Oncol 70(3):359–369

    Article  Google Scholar 

  3. Johannessen CU, Johannessen SI (2003) Valproate: past, present, and future. CNS drug reviews 9(2):199–216

    Article  CAS  PubMed  Google Scholar 

  4. Harden CL, Meador KJ, Pennell PB et al (2009) Practice parameter update: management issues for women with epilepsy--focus on pregnancy (an evidence-based review): teratogenesis and perinatal outcomes: report of the quality standards subcommittee and therapeutics and technology assessment subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology 73(2):133–141. doi:10.1212/WNL.0b013e3181a6b312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Breemen MS, Wilms EB, Vecht CJ (2007) Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 6(5):421–430. doi:10.1016/s1474-4422(07)70103-5

    Article  PubMed  Google Scholar 

  6. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276(39):36734–36741. doi:10.1074/jbc.M101287200

    Article  CAS  PubMed  Google Scholar 

  7. Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN (2005) Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res 65(9):3815–3822. doi:10.1158/0008-5472.can-04-2478

    Article  CAS  PubMed  Google Scholar 

  8. Munster P, Marchion D, Bicaku E et al (2007) Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 25(15):1979–1985. doi:10.1200/jco.2006.08.6165

    Article  CAS  PubMed  Google Scholar 

  9. Barker CA, Bishop AJ, Chang M, Beal K, Chan TA (2013) Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 86(3):504–509. doi:10.1016/j.ijrobp.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weller M, Gorlia T, Cairncross JG et al (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77(12):1156–1164. doi:10.1212/WNL.0b013e31822f02e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, Teo SH, Saunders N, Cheong SC (2012) Valproic acid: growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck 34(3):344–353. doi:10.1002/hed.21734

    Article  PubMed  Google Scholar 

  12. Brown SL, Kolozsvary A, Liu J, Ryu S, Kim JH (2008) Histone deacetylase inhibitors protect against and mitigate the lethality of total-body irradiation in mice. Radiat Res 169(4):474–478. doi:10.1667/rr1245.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jo SJ, Choi SJ, Yoon SY, Lee JY, Park WS, Park PJ, Kim KH, Eun HC, Kwon O (2013) Valproic acid promotes human hair growth in in vitro culture model. J Dermatol Sci 72(1):16–24. doi:10.1016/j.jdermsci.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  14. Lee SH, Yoon J, Shin SH et al (2012) Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells. PLoS One 7(4):e34152. doi:10.1371/journal.pone.0034152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jo SJ, Shin H, Park YW, Paik SH, Park WS, Jeong YS, Shin HJ, Kwon O (2014) Topical valproic acid increases the hair count in male patients with androgenetic alopecia: a randomized, comparative, clinical feasibility study using phototrichogram analysis. J Dermatol 41(4):285–291. doi:10.1111/1346-8138.12422

    Article  CAS  PubMed  Google Scholar 

  16. Reynolds MF, Sisk EC, Rasgon NL (2007) Valproate and neuroendocrine changes in relation to women treated for epilepsy and bipolar disorder: a review. Curr Med Chem 14(26):2799–2812

    Article  CAS  PubMed  Google Scholar 

  17. Jeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang DM (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 542(1–3):74–78

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101(47):16659–16664. doi:10.1073/pnas.0407643101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi:10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg G (2007) The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci 64(16):2090–2103. doi:10.1007/s00018-007-7079-x

    Article  CAS  PubMed  Google Scholar 

  21. Gould TD, Chen G, Manji HK (2004) In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology 29(1):32–38. doi:10.1038/sj.npp.1300283

    Article  CAS  PubMed  Google Scholar 

  22. Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, Salinas PC (2002) Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 20(2):257–270

    Article  CAS  PubMed  Google Scholar 

  23. Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH, Bryja V, Arenas E, Choi KY (2008) Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21 Cip/WAF1 pathway. BMC Cell Biol 9:66. doi:10.1186/1471-2121-9-66

    Article  PubMed  PubMed Central  Google Scholar 

  24. McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121(6):1267–1275. doi:10.1111/j.1523-1747.2003.12568.x

    Article  CAS  PubMed  Google Scholar 

  25. Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314(5804):1447–1450. doi:10.1126/science.1130088

    Article  CAS  PubMed  Google Scholar 

  26. Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118(2):216–225. doi:10.1046/j.0022-202x.2001.01670.x

    Article  CAS  PubMed  Google Scholar 

  27. Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2(5):643–653

    Article  CAS  PubMed  Google Scholar 

  28. Kishimoto J, Burgeson RE, Morgan BA (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14(10):1181–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ridanpaa M, Fodde R, Kielman M (2001) Dynamic expression and nuclear accumulation of beta-catenin during the development of hair follicle-derived structures. Mech Dev 109(2):173–181

    Article  CAS  PubMed  Google Scholar 

  30. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105(4):533–545

    Article  CAS  PubMed  Google Scholar 

  31. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE (2005) Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11(13):4912–4922. doi:10.1158/1078-0432.ccr-04-2088

    Article  CAS  PubMed  Google Scholar 

  32. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30(1):61–72. doi:10.1016/j.molcel.2008.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suh HS, Choi S, Khattar P, Choi N, Lee SC (2010) Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J NeuroImmune Pharmacol 5(4):521–532. doi:10.1007/s11481-010-9192-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jambalganiin U, Tsolmongyn B, Koide N, Odkhuu E, Naiki Y, Komatsu T, Yoshida T, Yokochi T (2014) A novel mechanism for inhibition of lipopolysaccharide-induced proinflammatory cytokine production by valproic acid. Int Immunopharmacol 20(1):181–187. doi:10.1016/j.intimp.2014.02.032

    Article  CAS  PubMed  Google Scholar 

  35. Harikrishnan KN, Karagiannis TC, Chow MZ, El-Osta A (2008) Effect of valproic acid on radiation-induced DNA damage in euchromatic and heterochromatic compartments. Cell Cycle 7(4):468–476

    Article  CAS  PubMed  Google Scholar 

  36. Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-Oncology 12(4):328–340. doi:10.1093/neuonc/nop005

    Article  CAS  PubMed  Google Scholar 

  37. Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P, Stalpers LJ (2012) Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neuro-Oncol 107(1):61–67. doi:10.1007/s11060-011-0725-z

    Article  Google Scholar 

Download references

Author’s contributions

SW and AT contributed to the design of the study, collected data, and wrote the manuscript. SS, DY, and SO facilitated the data collection. YK and MT performed the analyses. HA was involved in the review of the study design, protocol, and study report, and in the preparation of the manuscript. All authors reviewed and edited the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Kuwabara, Y., Suehiro, S. et al. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma. Eur J Clin Pharmacol 73, 357–363 (2017). https://doi.org/10.1007/s00228-016-2167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2167-1

Keywords

Navigation