Skip to main content
Log in

Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Complete or partial inactivity of UGT1A1, the unique enzyme responsible for bilirubin glucuronidation, is commonly associated with hyperbilirubinemia. We investigated the dynamic expression of UGT1A1, and that of the transcription factors (TFs) involved in its developmental regulation, during human hepatic growth in Han Chinese individuals.

Methods

Eighty-eight prenatal, pediatric, and adult liver samples were obtained from Han Chinese individuals. Quantitative real-time polymerase chain reaction was used to evaluate mRNA expression of UGT1A1 and TFs including PXR, CAR, HNF1A, HNF4A, PPARA, etc. UGT1A1 protein levels and metabolic activity were determined by western blotting and high-performance liquid chromatography. Direct sequencing was employed to genotype UGT1A1*6 (211G˃A) and UGT1A1*28 (TA6˃TA7) polymorphisms.

Results

UGT1A1 expression was minimal in prenatal samples, but significantly elevated during pediatric and adult stages. mRNA and protein levels and metabolic activity were prominently increased (120-, 20-, and 10-fold, respectively) in pediatric and adult livers compared to prenatal samples. Furthermore, expression did not differ appreciably between pediatric and adult periods. Dynamic expression of TFs, including PXR, CAR, HNF1A, HNF4A, and PPARA, was consistent with UGT1A1 levels at each developmental stage. A pronounced correlation between expression of these TFs and that of UGT1A1 (P < 0.001) was observed. Moreover, UGT1A1*6 and UGT1A1*28 polymorphisms reduced levels of UGT1A1 by up to 40–60 %.

Conclusions

Hepatic expression of transcription factors is associated with developmental regulation of UGT1A1 in the Han Chinese population. Moreover, UGT1A1 polymorphisms are associated with reduced expression of UGT1A1 mRNA and protein, as well as enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154(2):103–116

    Article  CAS  PubMed  Google Scholar 

  2. Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3(3):136–158

    Article  CAS  PubMed  Google Scholar 

  3. Burchell B, Nebert DW, Nelson DR, Bock KW, Iyanagi T, Jansen PL, Lancet D, Mulder GJ, Chowdhury JR, Siest G et al (1991) The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA Cell Biol 10:487–494

    Article  CAS  PubMed  Google Scholar 

  4. Bosma PJ, Seppen J, Goldhoorn B, Bakker C, Oude Elferink RP, Chowdhury JR, Chowdhury NR, Jansen PL (1994) Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J Biol Chem 269(27):17960–17964

    CAS  PubMed  Google Scholar 

  5. Crigler JF Jr, NAJJAR VA (1952) Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 10(2):169–180

    PubMed  Google Scholar 

  6. Huang CS, Chang PF, Huang MJ, Chen ES, Hung KL, Tsou KI (2002) Relationship between bilirubin UDP-glucuronosyl transferase 1A1 gene and neonatal hyperbilirubinemia. Pediatr Res 52(4):601–605

    Article  CAS  PubMed  Google Scholar 

  7. Emokpae AA, Mabogunje CA, Imam ZO, Olusanya BO (2016) Heliotherapy for Neonatal Hyperbilirubinemia in Southwest, Nigeria: a baseline pre-intervention study. PLoS One 11(3), e0151375. doi:10.1371/journal.pone.0151375, eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aoshima N, Fujie Y, Itoh T, Tukey RH, Fujiwara R (2014) Glucose induces intestinal human UDP-glucuronosyltransferase (UGT) 1A1 to prevent neonatal hyperbilirubinemia. Sci Rep 4:6343. doi:10.1038/srep06343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujiwara R, Chen S, Karin M, Tukey RH (2012) Reduced expression of UGT1A1 in intestines of humanized UGT1 mice via inactivation of NF-kB leads to hyperbilirubinemia. Gastroenterology 142(1):109–118

    Article  CAS  PubMed  Google Scholar 

  10. Fujiwara R, Maruo Y, Chen S, Tukey RH (2015) Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol 289(1):124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang H, Wang Q, Zheng L, Lin M, Zheng XB, Lin F, Yang LY (2015) Multiple genetic modifiers of bilirubin metabolism involvement in significant neonatal hyperbilirubinemia in patients of Chinese descent. PLoS One 10(7), e0132034

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang C, Liu Y, Xi WQ, Zhou CF, Jiang JL, Ma T, Ye ZB, Zhang J, Zhu ZG (2015) Relationship between UGT1A1*6/*28 polymorphisms and severe toxicities in Chinese patients with pancreatic orbiliary tract cancer treated with irinotecan-containing regimens. Drug Des Devel Ther 9:3677–3683

    PubMed  PubMed Central  Google Scholar 

  13. O’Dwyer PJ, Catalano RB (2006) Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J Clin Oncol 24(28):4534–4538

    Article  PubMed  Google Scholar 

  14. Desai AA, Innocenti F, Ratain MJ (2003) Pharmacogenomics: road to anticancer therapeutics nirvana? Oncogene 22(42):6621–6628

    Article  CAS  PubMed  Google Scholar 

  15. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, Chen P, Das S, Rosner GL, Ratain MJ (2009) Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27(16):2604–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300(2):361–366

    Article  CAS  PubMed  Google Scholar 

  17. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN (1999) Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37(6):485–505

    Article  PubMed  Google Scholar 

  18. Kawade N, Onishi S (1981) The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J 196(1):257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyagi SJ, Collier AC (2011) The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos 39(5):912–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burchell B, Coughtrie M, Jackson M, Harding D, Fournel-Gigleux S, Leakey J, Hume R (1989) Development of human liver UDP-glucuronosyltransferases. Dev Pharmacol Ther 13(2–4):70–77

    CAS  PubMed  Google Scholar 

  21. Lu H, Gunewardena S, Cui JY, Yoo B, Zhong XB, Klaassen CD (2013) RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs of phase II enzymes inmice. Drug Metab Dispos 41(4):844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sutherland JM (1959) Fatal cardiovascular collapse of infants receiving large amounts of chloramphenicol. AMA J Dis Child 97(6):761–767

    CAS  PubMed  Google Scholar 

  23. Weiss CF, Glasko AJ, Weston JK (1960) Chloramphenicol in the newborn infant. A physiologic explanation of its toxicity when given in excessive doses. N Engl J Med 262:787–794

    Article  CAS  PubMed  Google Scholar 

  24. Bock KW (2010) Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels. Biochem Pharmacol 80(6):771–777

    Article  CAS  PubMed  Google Scholar 

  25. Betts S, Björkhem-Bergman L, Rane A, Ekström L (2015) Expression of CYP3A4 and CYP3A7 in human foetal tissues and its correlation with nuclear receptors. Basic Clin Pharmacol Toxicol 117(4):261–266

    CAS  PubMed  Google Scholar 

  26. Li J, Wan Y, Na S, Liu X, Dong G, Yang Z, Yang J, Yue J (2015) Sex-dependent regulation of hepatic CYP3A by growth hormone: roles of HNF6, C/EBPα, and RXRα. Biochem Pharmacol 93(1):92–103

    Article  CAS  PubMed  Google Scholar 

  27. Liu W, Ramírez J, Gamazon ER, Mirkov S, Chen P, Wu K, Sun C, Cox NJ, Cook E Jr, Das S, Ratain MJ (2014) Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet 23(20):5558–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Buckley D, Wang S, Klaassen CD, Zhong XB (2009) Genetic polymorphisms in the TATA box and upstream phenobarbital-responsive enhancer module of the UGT1A1 promoter have combined effects on UDP-glucuronosyltransferase 1A1 transcription mediated by constitutive androstane receptor, pregnane X receptor, or glucocorticoid receptor in human liver. Drug Metab Dispos 37(9):1978–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shiu TY, Huang TY, Huang SM, Shih YL, Chu HC, Chang WK, Hsieh TY (2013) Nuclear factor kB down-regulates human UDP-glucuronosyltransferase 1A1: a novel mechanism involved in inflammation-associated hyperbilirubinaemia. Biochem J 449(3):761–770

    Article  CAS  PubMed  Google Scholar 

  30. Oda S, Fukami T, Yokoi T, Nakajima M (2013) Epigenetic regulation is a crucial factor in the repression of UGT1A1 expression in the human kidney. Drug Metab Dispos 41(10):1738–1743

    Article  CAS  PubMed  Google Scholar 

  31. Bélanger AS, Tojcic J, Harvey M, Guillemette C (2010) Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Mol Biol 11:9. doi:10.1186/1471-2199-11-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ramírez J, Mirkov S, Zhang W, Chen P, Das S, Liu W, Ratain MJ, Innocenti F (2008) Hepatocyte nuclear factor-1 alpha is associated with UGT1A1, UGT1A9 and UGT2B7 mRNA expression in human liver. Pharmacogenomics J 8(2):152–161

    Article  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  34. De Duve C (1971) Tissue fractionation-past and present. J Cell Biol 50(1):20d–55d

    Article  PubMed  Google Scholar 

  35. Zhou J, Tracy TS, Remmel RP (2010) Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. Drug Metab Dispos 38(11):1907–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma G, Lin J, Cai WM, Tan B, Xiang X, Zhang Y, Zhang P (2014) Simultaneous determination of bilirubin and its glucuronides in liver microsomes and recombinant UGT1A1 enzyme incubation systems by HPLC method and its application to bilirubin glucuronidation studies. J Pharm Biomed Anal 92:149–159

    Article  CAS  PubMed  Google Scholar 

  37. Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, Manns MP (2002) Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 50(2):259–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez FJ, Lee YH (1996) Constitutive expression of hepatic cytochrome P450 genes. FASEB J 10(10):1112–1117

    CAS  PubMed  Google Scholar 

  39. Toide K, Takahashi Y, Yamazaki H, Terauchi Y, Fujii T, Parkinson A, Kamataki T (2002) Hepatocyte nuclear factor-1 alpha is a causal factor responsible for interindividual differences in the expression of UDP-glucuronosyltransferase 2B7 mRNA in human livers. Drug Metab Dispos 30(6):613–615

    Article  CAS  PubMed  Google Scholar 

  40. Vyhlidal CA, Gaedigk R, Leeder JS (2006) Nuclear receptor expression in fetal and pediatric liver: correlation with CYP3A expression. Drug Metab Dispos 34(1):131–137

    Article  CAS  PubMed  Google Scholar 

  41. Bock KW (2011) From differential induction of UDP-glucuronosyltransferases in rat liver to characterization of responsible ligand-activated transcription factors, and their multilevel crosstalk in humans. Biochem Pharmacol 82(1):9–16

    Article  CAS  PubMed  Google Scholar 

  42. Ou Z, Huang M, Zhao L, Xie W (2010) Use of transgenic mice in UDP-glucuronosyltransferase (UGT) studies. Drug Metab Rev 42(1):123–131

    Article  CAS  PubMed  Google Scholar 

  43. Aleksunes LM, Klaassen CD (2010) Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice. Drug Metab Dispos 40(7):1366–1379

    Article  Google Scholar 

  44. Xu C, Li CY, Kong AN (2005) Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28(3):249–268

    Article  CAS  PubMed  Google Scholar 

  45. Hu DG, Meech R, McKinnon RA, Mackenzie PI (2014) Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 46(4):421–458

    Article  CAS  PubMed  Google Scholar 

  46. Dluzen DF, Sun D, Salzberg AC, Jones N, Bushey RT, Robertson GP, Lazarus P (2014) Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p. J Pharmacol Exp Ther 348(3):465–477

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guillemette C, Lévesque E, Harvey M, Bellemare J, Menard V (2010) UGT genomic diversity: beyond gene duplication. Drug Metab Rev 42(1):24–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 81173127 and 81273581).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-rong Zhang or Quan-cheng Kan.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOCX 16 kb)

Supplemental Table 2

(DOCX 17 kb)

Supplemental Table 3

(DOCX 16 kb)

Supplemental Table 4

(DOCX 17 kb)

Supplemental Table 5

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Yl., He, H., Li, Jf. et al. Hepatic expression of transcription factors affecting developmental regulation of UGT1A1 in the Han Chinese population. Eur J Clin Pharmacol 73, 29–37 (2017). https://doi.org/10.1007/s00228-016-2137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-016-2137-7

Keywords

Navigation