Skip to main content
Log in

Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to determine the steady-state pharmacokinetics of metformin in healthy volunteers with different numbers of reduced-function alleles in the organic cation transporter 1 gene (OCT1).

Methods

The study was conducted as part of a randomized cross-over trial. Thirty-four healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9 with two reduced-function alleles) were included. In one of the study periods, they were titrated to steady-state with 1 g metformin twice daily.

Results

Neither AUC0-12, C max nor Clrenal were statistically significantly affected by the number of reduced-function alleles (0, 1 or 2) in OCT1: (AUC0-12: 0, 1, 2: 14, 13 and 14 h ng/L (P= 0.61)); (C max: 0, 1, 2: 2192, 1934 and 2233 ng/mL, (P = 0.26)) and (Clrenal: 0, 1, 2: 31, 28 and 30 L/h (P = 0.57))

Conclusions

In a cohort of healthy volunteers, we found no impact of different OCT1 genotypes on metformin steady-state pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. UKPDS Group 1998 (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:854–865

    Article  Google Scholar 

  2. Hundal RS, Krssak M, Dufour S et al (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. El-Mir MY, Nogueira V, Fontaine E et al (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228

    Article  CAS  PubMed  Google Scholar 

  5. Stephenne X, Foretz M, Taleux N et al (2011) Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54:3101–3110. doi:10.1007/s00125-011-2311-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546. doi:10.1038/nature13270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676

    Article  CAS  PubMed  Google Scholar 

  8. Pentikainen PJ, Neuvonen PJ, Penttila A (1979) Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol 16(3):195–202

    Article  CAS  PubMed  Google Scholar 

  9. Zhou M, Xia L, Wang J (2007) Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 35:1956–1962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Muller J, Lips KS, Metzner L et al (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 70:1851–1860

    Article  PubMed  Google Scholar 

  11. Graham GG, Punt J, Arora M et al (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50:81–98. doi:10.2165/11534750-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  12. Koepsell H (2004) Polyspecific organic cation transporters: their functions and interactions with drugs. Trends Pharmacol Sci 25:375–381

    Article  CAS  PubMed  Google Scholar 

  13. Dresser MJ, Zhang L, Giacomini KM (1999) Molecular and functional characteristics of cloned human organic cation transporters. Pharm Biotechnol 12:441–469

    Article  CAS  PubMed  Google Scholar 

  14. Becker ML, Visser LE, van Schaik RH et al (2009) Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 9:242–247

    Article  CAS  PubMed  Google Scholar 

  15. Shikata E, Yamamoto R, Takane H et al (2007) Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 52:117–122

    Article  CAS  PubMed  Google Scholar 

  16. Shu Y, Sheardown SA, Brown C et al (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117:1422–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Shu Y, Brown C, Castro RA et al (2008) Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 83:273–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tzvetkov MV, Vormfelde SV, Balen D et al (2009) The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 86:299–306

    Article  CAS  PubMed  Google Scholar 

  19. Christensen MMH, Brasch-Andersen C, Green H et al (2011) The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics 21:837–850. doi:10.1097/FPC.0b013e32834c0010

    Article  CAS  PubMed  Google Scholar 

  20. Tarasova L, Kalnina I, Geldnere K et al (2012) Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics 22:659–666. doi:10.1097/FPC.0b013e3283561666

    Article  CAS  PubMed  Google Scholar 

  21. Meyer Zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB (2010) Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Ren Physiol 298(4):F997–F1005. doi:10.1152/ajprenal.00431.2009

  22. Chen Y, Li S, Brown C et al (2009) Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet Genomics 19:497–504

    Article  PubMed Central  PubMed  Google Scholar 

  23. Song IS, Shin HJ, Shim EJ et al (2008) Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 84:559–562

    Article  CAS  PubMed  Google Scholar 

  24. Wang ZJ, Yin OQ, Tomlinson B, Chow MS (2008) OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics 18:637–645

    Article  CAS  PubMed  Google Scholar 

  25. Christensen MMH, Pedersen RS, Stage TB et al (2013) A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet Genomics 23:526–534. doi:10.1097/FPC.0b013e328364a57d

    Article  CAS  PubMed  Google Scholar 

  26. Stocker SL, Morrissey KM, Yee SW et al (2013) The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 93:186–194. doi:10.1038/clpt.2012.210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH (2009) Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genom 20(1):38–44. doi:10.1097/FPC.0b013e328333bb11

  28. Goswami S, Yee SW, Stocker S et al (2014) Genetic variants in transcription factors are associated with the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 96:370–379. doi:10.1038/clpt.2014.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Stage TB, Pedersen RS, Damkier P et al (2014) Intake of St John’s wort improves the glucose tolerance in healthy subjects that ingest metformin compared to metformin alone. Br J Clin Pharmacol. doi:10.1111/bcp.12510

    Google Scholar 

  30. Pedersen RS, Christensen MM, Brosen K (2012) Linkage disequilibrium between the CYP2C19*17 allele and other clinically important CYP2C allelic variants in a healthy Scandinavian population. Eur J Clin Pharmacol 68:1463–1464. doi:10.1007/s00228-012-1272-z

    Article  PubMed  Google Scholar 

  31. Nielsen F, Christensen MM, Brosen K (2013) Quantitation of metformin in human plasma and urine by hydrophilic interaction liquid chromatography and application to a pharmacokinetic study. Ther Drug Monit. doi:10.1097/FTD.0b013e3182a4598a

    Google Scholar 

  32. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989. doi:10.1086/319501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462. doi:10.1086/428594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  35. Thomas MC, Tikellis C, Burns WC et al (2003) Reduced tubular cation transport in diabetes: prevented by ACE inhibition. Kidney Int 63:2152–2161. doi:10.1046/j.1523-1755.2003.00006.x

    Article  CAS  PubMed  Google Scholar 

  36. Habu Y, Yano I, Takeuchi A et al (2003) Decreased activity of basolateral organic ion transports in hyperuricemic rat kidney: roles of organic ion transporters, rOAT1, rOAT3 and rOCT2. Biochem Pharmacol 66:1107–1114

    Article  CAS  PubMed  Google Scholar 

  37. Denk GU, Soroka CJ, Mennone A et al (2004) Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatol Baltim Md 39:1382–1389. doi:10.1002/hep.20176

    Article  CAS  Google Scholar 

  38. Nies AT, Koepsell H, Winter S et al (2009) Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50:1227–1240. doi:10.1002/hep.23103

    Article  CAS  PubMed  Google Scholar 

  39. Savic RM, Yee S, Giacomini KM (2011) Effect of genetic variation in the organic cation transporter 1 and 2 on metformin pharmacokinetics: nonlinear mixed-effects analysis. Clin Pharmacol Ther 89(supplement 1):5

    Google Scholar 

  40. Stage TB, Damkier P, Pedersen RS et al (2015) A twin study of the trough plasma steady-state concentration of metformin. Pharmacogenet Genomics. doi:10.1097/FPC.0000000000000133

    PubMed  Google Scholar 

  41. Zhou K, Donnelly L, Yang J et al (2014) Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2:481–487. doi:10.1016/S2213-8587(14)70050-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kajiwara M, Terada T, Asaka J et al (2007) Critical roles of Sp1 in gene expression of human and rat H+/organic cation antiporter MATE1. Am J Physiol Ren Physiol 293:F1564–F1570

    Article  CAS  Google Scholar 

  43. Choi JH, Yee SW, Ramirez AH et al (2011) A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther 90:674–684. doi:10.1038/clpt.2011.165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Nie W, Sweetser S, Rinella M, Green RM (2005) Transcriptional regulation of murine Slc22a1 (Oct1) by peroxisome proliferator agonist receptor-alpha and -gamma. Am J Physiol Gastrointest Liver Physiol 288:G207–G212. doi:10.1152/ajpgi.00057.2004

    Article  CAS  PubMed  Google Scholar 

  45. Saborowski M, Kullak-Ublick GA, Eloranta JJ (2006) The human organic cation transporter-1 gene is transactivated by hepatocyte nuclear factor-4α. J Pharmacol Exp Ther 317:778–785. doi:10.1124/jpet.105.099929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of laboratory technicians Charlotte Bøtchiær Olsen, Lone Hansen, Birgitte Damby, Susanne Hillbrandt, MD Kenneth Skov and PhD Søren Feddersen.

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

Funding

The study was supported by the Odense University Hospital Free Research Fund in 2012 and the Danish Research Council for Health and Disease (grant number 0602-02695B).

Author contributions

MMC analyzed and interpreted the data. MMC, KH, OHN, PD, HBN and KB designed the study. TBS contributed to the data analysis. MMC drafted the manuscript. All authors critically assessed and reviewed the manuscript. All authors have made a final approval of the manuscript. MMC is the guarantor of this work and takes responsibility for the data integrity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Marie Hougaard Christensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 44 kb)

ESM 2

(DOC 35 kb)

ESM 3

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, M.M.H., Højlund, K., Hother-Nielsen, O. et al. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers. Eur J Clin Pharmacol 71, 691–697 (2015). https://doi.org/10.1007/s00228-015-1853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-015-1853-8

Keywords

Navigation