Skip to main content

Advertisement

Log in

S-ketamine concentrations are greatly increased by grapefruit juice

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We examined the effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of oral S-ketamine.

Methods

A randomized crossover open-label study design with two phases at an interval of 4 weeks was conducted in 12 healthy volunteers. Grapefruit juice or water was ingested 200 ml t.i.d. for 5 days. An oral dose of 0.2 mg/kg of S-ketamine was ingested on day 5 with 150 ml grapefruit juice or water. Plasma concentrations of ketamine and norketamine were determined for 24 h, and pharmacodynamic variables were recorded for 12 h. Noncompartmental methods were used to calculate pharmacokinetic parameters.

Results

Grapefruit juice increased the geometric mean value of the area under the plasma ketamine concentration–time curve (AUC0–∞) by 3.0-fold (range 2.4- to 3.6-fold; P < 0.001), the peak plasma concentration (Cmax) by 2.1-fold (range 1.8- to 2.6-fold; P < 0.001), and the elimination half-life by 24% (P < 0.05) as compared to the water phase. The ratio of main metabolite norketamine to ketamine (AUCm/AUCp) was decreased by 57% (P < 0.001) during the grapefruit phase. Self-rated relaxation was decreased (P < 0.05) and the performance in the digit symbol substitution test was increased (P < 0.05) after grapefruit juice, but other behavioral or analgesic effects were not affected.

Conclusions

Grapefruit juice significantly increased the plasma concentrations of oral ketamine in healthy volunteers. Dose reductions of ketamine should be considered when using oral ketamine concomitantly with grapefruit juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petrenko AB, Yamakura T, Hiroshi B, Shimoji K (2003) The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 97:1108–1116

    Article  PubMed  CAS  Google Scholar 

  2. Bell RF, Eccleston C, Kalso E (2003) Ketamine as an adjuvant to opioids for cancer pain. A qualitative systematic review. J Pain Symptom Manag 26:867–875

    Article  CAS  Google Scholar 

  3. Bell RF, Dahl JB, Moore RA, Kalso E (2005) Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review. Acta Anesth Scand 49:1405–1428

    Article  CAS  Google Scholar 

  4. Bell RF (2009) Ketamine for chronic non-cancer pain. Pain 141:210–214

    Article  PubMed  CAS  Google Scholar 

  5. Chong C, Schug SA, Page-Sharp M, Jenkins B, Ilett KF (2009) Development of a sublingual/oral formulation of ketamine for use in neuropathic pain: preliminary findings from a three-way randomized, crossover study. Clin Drug Investig 29:317–324

    Article  PubMed  CAS  Google Scholar 

  6. Huge V, Lauchart M, Magerl W, Schelling G, Beyer A, Thieme D, Azad SC (2010) Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain. Eur J Pain 14:387–394

    Article  PubMed  CAS  Google Scholar 

  7. Arendt-Nielsen L, Nielsen J, Petersen-Felix S, Schnider TW, Zbinden AM (1996) Effect of racemic micture and the S(+)-isomer of ketamine on temporal and spatial summation of pain. Br J Anaesth 77:625–631

    Article  PubMed  CAS  Google Scholar 

  8. Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, Iga T (2001) Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 29:887–890

    PubMed  CAS  Google Scholar 

  9. Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858

    Article  PubMed  CAS  Google Scholar 

  10. Grant IS, Nimmo WS, Clements JA (1981) Pharmacokinetics and analgesic effects of i.m. and oral ketamine. Br J Anaesth 53:805–810

    Article  PubMed  CAS  Google Scholar 

  11. Clements JA, Nimmo WS, Grant IS (1982) Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci 71:539–542

    Article  PubMed  CAS  Google Scholar 

  12. Yanagihara Y, Ohtani M, Kariya S, Uchino K, Hiraishi T, Ashizawa N, Aoyama T, Yamamura Y, Yamada Y, Iga T (2003) Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy Japanese volunteers. Biopharm Drug Dispos 24:37–43

    Article  PubMed  CAS  Google Scholar 

  13. Ducharme MP, Warbasse LH, Edwards DJ (1995) Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 57:485–491

    Article  PubMed  CAS  Google Scholar 

  14. Hanley MJ, Cancalon P, Widmer WW, Greenblatt DJ (2011) The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol 7:267–286

    Article  PubMed  CAS  Google Scholar 

  15. Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, Kim RB (2002) Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther 71:11–20

    Article  PubMed  CAS  Google Scholar 

  16. Wang X, Wolkoff AW, Morris ME (2005) Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OAT-C) modulators. Drug Metab Dispos 33:1666–1672

    Article  PubMed  CAS  Google Scholar 

  17. Bailey DG (2010) Fruit juice inhibition of uptake transport: a new type of food-drug interaction. Br J Clin Pharmacol 70:645–655

    Article  PubMed  CAS  Google Scholar 

  18. Seden K, Dickinson L, Khoo S, Back D (2010) Grapefruit-drug interactions. Drugs 70:2373–2407

    Article  PubMed  CAS  Google Scholar 

  19. Eagling VA, Profit L, Back DJ (1999) Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. Br J Clin Pharmacol 48:543–552

    Article  PubMed  CAS  Google Scholar 

  20. Edwards DJ, Fitzsimmons ME, Schuetz EG, Yasuda K, Ducharme MP, Warbasse LH, Woster PM, Schuetz JD, Watkins P (1999) 6´,7´-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther 65:237–244

    Article  PubMed  CAS  Google Scholar 

  21. Li P, Gallery PS, Gan LS, Balani SK (2007) Esterase inhibition by grapefruit juice flavonoids leading to a new drug interaction. Drug Metab Dispos 35:1203–1208

    Article  PubMed  CAS  Google Scholar 

  22. Li P, Callery PS, Gan LS, Balani SK (2007) Esterase inhibition attribute of grapefruit juice leading to a new drug interaction. Drug Metab Dispos 35:1023–1031

    Article  PubMed  CAS  Google Scholar 

  23. Nishimuta H, Tsujimoto M, Ogura K, Hiratsuka A, Ohtani H, Sawada Y (2005) Inhibitory effects of various beverages on ritodrine sulfation by recombinant human sulfotransferase isoforms SULT1A1 and SULT1A3. Pharm Res 22:1406–1410

    Article  PubMed  CAS  Google Scholar 

  24. Nishimuta H, Ohtani H, Tsujimoto M, Ogura K, Hiratsuka A, Sawada Y (2007) Inhibitory effects of various beverages on human recombinant sulfotransferase isoforms SULT1A1 and SULT1A3. Biopharm Drug Dispos 28:491–500

    Article  PubMed  CAS  Google Scholar 

  25. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1997) The cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice. Eur J Clin Pharmacol 52:311–315

    Article  PubMed  CAS  Google Scholar 

  26. Kantola T, Kivistö KT, Neuvonen PJ (1998) Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 63:397–402

    Article  PubMed  CAS  Google Scholar 

  27. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) Interaction between grapefruit juice and diazepam in humans. Eur J Drug Metab Pharmacokinet 21:55–59

    Article  Google Scholar 

  28. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) Grapefruit juice-felodipine interaction: effect of naringin and 6´,7´-dihydroxybergamottin in humans. Clin Pharmacol Ther 64:248–256

    Article  PubMed  CAS  Google Scholar 

  29. Hagelberg NM, Peltoniemi MA, Saari TI, Kurkinen KJ, Laine K, Neuvonen PJ, Olkkola KT (2010) Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain 14:625–629

    Article  PubMed  CAS  Google Scholar 

  30. Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT (2011) St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam Clin Pharmacol (in press). doi:10.1111/j.1472-8206.2011.00954.x

  31. Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K, Neuvonen PJ, Olkkola KT (2011) Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther 90:296–302

    Article  PubMed  CAS  Google Scholar 

  32. Noppers I, Olofsen E, Niesters M, Aarts L, Mooren R, Dahan A, Kharasch E, Sarton E (2011) Effect of rifampicin on S-ketamine and S-norketamine plasma concentrations in healthy volunteers after intravenous S-ketamine administration. Anesthesiology 114:1435–1445

    Article  PubMed  CAS  Google Scholar 

  33. Olkkola KT, Backman JT, Neuvonen PJ (1994) Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55:481–485

    Article  PubMed  CAS  Google Scholar 

  34. Nivoix Y, Levêque D, Raoul H, Koffel J-C, Beretz L, Ubeaud-Sequier G (2008) The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet 47:779–792

    Article  PubMed  CAS  Google Scholar 

  35. Michna E, Ross EL, Hynes WL, Nedeljkovic SS, Soumekh S, Janfaza D, Palombi D, Jamison RN (2004) Predicting aberrant drug behavior in patients treated for chronic pain: importance of abuse history. J Pain Symptom Manage 28:250–258

    Article  PubMed  Google Scholar 

  36. Feng N, Vollenweider FX, Minder EI, Rentsch K, Grampp T, Vonderschmitt DJ (1995) Development of a gas chromatography–mass spectrometry method for determination of ketamine in plasma and its application to human samples. Therap Drug Monit 17:95–100

    Article  CAS  Google Scholar 

  37. Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Article  Google Scholar 

  38. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3:132–134

    Article  PubMed  CAS  Google Scholar 

  39. Stone BM (1984) Pencil and paper tests – sensitivity to psychotropic drugs. Br J Clin Pharmacol 18:15S–20S

    PubMed  Google Scholar 

  40. Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, He K, Lown KS, Woster PM, Rahman A, Thummel KE, Fisher JM, Hollenberg PF, Watkins PB (1997) Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 25:1228–1233

    PubMed  CAS  Google Scholar 

  41. Guo LQ, Fukuda K, Ohta T, Yamazoe Y (2000) Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity. Drug Metab Dispos 28:766–771

    PubMed  CAS  Google Scholar 

  42. Lin HL, Kent UM, Hollenberg PF (2005) The grapefruit juice effect is not limited to cytochrome P450 (P450) 3A4: evidence for bergamottin-dependent inactivation, heme destruction, and covalent binding to protein in P450s 2B6 and 3A5. J Pharmacol Exp Ther 313:154–164

    Article  PubMed  CAS  Google Scholar 

  43. Tassaneeyakul W, Guo LQ, Fukuda K, Ohta T, Yamazoe Y (2000) Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 378:356–363

    Article  PubMed  CAS  Google Scholar 

  44. Bailey DG, Spence JD, Edgar B, Bayliff CD, Arnold JM (1989) Ethanol enhances the hemodynamic effects of felodipine. Clin Invest Med 12:357–362

    PubMed  CAS  Google Scholar 

  45. Lilja JJ, Kivistö KT, Backman JT, Neuvonen PJ (2000) Effect of grapefruit juice dose on grapefruit juice–triazolam interaction: repeated consumption prolongs triazolam half-life. Eur J Clin Pharmacol 56:411–415

    Article  PubMed  CAS  Google Scholar 

  46. Lilja JJ, Backman JT, Laitila J, Luurila H, Neuvonen PJ (2003) Itraconazole increases but grapefruit juice greatly decreases plasma concentrations of celiprolol. Clin Pharmacol Ther 73:192–198

    Article  PubMed  CAS  Google Scholar 

  47. Tapaninen T, Neuvonen PJ, Niemi M (2010) Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren. Clin Pharmacol Ther 88:339–342

    Article  PubMed  CAS  Google Scholar 

  48. Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT (2010) Grapefruit juice enhances the exposure to oral oxycodone. Basic Clin Pharmacol Toxicol 107:782–788

    Article  PubMed  CAS  Google Scholar 

  49. Lilja JJ, Kivistö KT, Neuvonen PJ (1998) Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 64:477–483

    Article  PubMed  CAS  Google Scholar 

  50. Lilja JJ, Kivisto KT, Backman JT, Lamberg TS, Neuvonen PJ (1998) Grapefruit juice substantially increases plasma concentrations of buspirone. Clin Pharmacol Ther 64:655–660

    Article  PubMed  CAS  Google Scholar 

  51. Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, Brown MB, Guo W, Watkins PB (1997) Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 99:2545–2553

    Article  PubMed  CAS  Google Scholar 

  52. Greenblatt DJ, von Moltke LL, Harmatz JS, Chen G, Weemhoff JL, Jen C, Kelley CJ, LeDuc BW, Zinny MA (2003) Time course of recovery of cytochrome p450 3A function after single doses of grapefruit juice. Clin Pharmacol Ther 74:121–129

    Google Scholar 

Download references

Acknowledgments

We want to thank Mrs. Elina Kahra (medical laboratory technologist, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Turku, Finland) for her skillful technical assistance.

Financial support

Turku University Hospital research fund EVO 13821, Turku, Finland; Instrumentarium Research Foundation, Helsinki, Finland and Sigrid Juselius Foundation, Helsinki, Finland

Conflict on interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus T. Olkkola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peltoniemi, M.A., Saari, T.I., Hagelberg, N.M. et al. S-ketamine concentrations are greatly increased by grapefruit juice. Eur J Clin Pharmacol 68, 979–986 (2012). https://doi.org/10.1007/s00228-012-1214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1214-9

Keywords

Navigation