Skip to main content

Advertisement

Log in

Drug-induced immune thrombocytopaenia: results from the Berlin Case–Control Surveillance Study

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Drug-induced immune thrombocytopaenia is a rare, serious condition that can be triggered by numerous medications. To characterize the spectrum of drugs associated with immune thrombocytopaenia (ITP) in the Berlin Case–Control Surveillance Study (FAKOS).

Methods

Adult hospitalized patients with new onset idiopathic, secondary or drug-induced acute ITP and hospital control patients were ascertained by active surveillance in 50 Berlin hospitals (>180 clinical departments) between 2000 and 2009. Drug exposures were obtained in a personal interview. Chronic cases were excluded in a follow-up after 6 or more months. A standardized causality assessment was conducted for each ITP patient to assess possible drug aetiology. Drug risks were quantified in a case–control design with unconditional logistic regression analysis.

Results

Ninety out of 169 validated cases of acute ITP were assessed as being at least possibly drug-related (n = 85 different drugs overall, n = 30 drugs with certain or probable causality). Drugs involved in ≥2 cases with a probable or certain relationship were tirofiban (n = 10 cases), abciximab (n = 4), trimethoprim/sulphamethoxazole (n = 4), influenza vaccine (n = 3), and citalopram (n = 2). Pneumococcal and poliomyelitis vaccine were assessed as probably causing ITP in one case each. In the case–control analyses, significantly increased risks were observed for tirofiban, abciximab, trimethoprim/sulphamethoxazole, gentamicin, triamterene/hydrochlorothiazide, drospirenone/ethinylestradiol, and influenza vaccination.

Conclusions

Our study confirms known ITP risks for glycoprotein IIb/IIIa receptor antagonists and sulphonamides and generates signals for several other drugs and vaccines. New onset of ITP should not only direct attention to drugs as possible aetiological agents, but also to vaccines that are known to cause autoimmune phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aster RH, Bougie DW (2007) Drug-induced immune thrombocytopenia. N Engl J Med 357(6):580–587

    Article  PubMed  Google Scholar 

  2. Kenney B, Stack G (2009) Drug-induced thrombocytopenia. Arch Pathol Lab Med 133(2):309–314

    PubMed  Google Scholar 

  3. Kang SY, Choi JC, Kang JH, Lee JS (2010) Acute subdural hemorrhage associated with rifampicin-induced thrombocytopenia. Neurol Sci 31(2):199–200

    Article  PubMed  CAS  Google Scholar 

  4. Kolluri VR, Reddy DR, Reddy PK, Naidu MR, Kumari CS (1986) Subdural hematoma secondary to immune thrombocytopenic purpura: case report. Neurosurgery 19(4):635–636

    Article  PubMed  CAS  Google Scholar 

  5. Single report database for drug–induced thrombocytopenia: An update. http://www.ouhsc.edu/platelets/InternetPostingLitSingleFrames2_18_11.htm. Accessed 13 September 2011

  6. George JN, Aster RH (2009) Drug-induced thrombocytopenia: pathogenesis, evaluation, and management. Hematol Am Soc Hematol Educ Program:153–158

  7. Visentin GP, Liu CY (2007) Drug-induced thrombocytopenia. Hematol Oncol Clin North Am 21(4):685–696, vi

    Article  PubMed  Google Scholar 

  8. Van den Bemt PM, Meyboom RH, Egberts AC (2004) Drug-induced immune thrombocytopenia. Drug Saf 27(15):1243–1252

    Article  PubMed  Google Scholar 

  9. Database for drug–induced thrombocytopenia from Group Patient Reports: an update. http://www.ouhsc.edu/platelets/InternetPostingLitGroup2_18_11.htm. Accessed 13 September 2011

  10. George JN, Raskob GE, Shah SR, Rizvi MA, Hamilton SA, Osborne S, Vondracek T (1998) Drug-induced thrombocytopenia: a systematic review of published case reports. Ann Intern Med 129(11):886–890

    PubMed  CAS  Google Scholar 

  11. Aster RH, Curtis BR, McFarland JG, Bougie DW (2009) Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost 7(6):911–918

    Article  PubMed  CAS  Google Scholar 

  12. Reese JA, Li X, Hauben M, Aster RH, Bougie DW, Curtis BR, George JN, Vesely SK (2010) Identifying drugs that cause acute thrombocytopenia: an analysis using 3 distinct methods. Blood 116(12):2127–2133

    Article  PubMed  CAS  Google Scholar 

  13. Warkentin TE, Anderson JA (2010) DITP causation: 3 methods better than 1? Blood 116(12):2002–2003

    Article  PubMed  CAS  Google Scholar 

  14. Kaufman DW, Kelly JP, Johannes CB, Sandler A, Harmon D, Stolley PD, Shapiro S (1993) Acute thrombocytopenic purpura in relation to the use of drugs. Blood 82(9):2714–2718

    PubMed  CAS  Google Scholar 

  15. ten Berg MJ, Huisman A, Souverein PC, Schobben AF, Egberts AC, van Solinge WW, van den Bemt PM (2006) Drug-induced thrombocytopenia: a population study. Drug Saf 29(8):713–721

    Article  PubMed  Google Scholar 

  16. Bertuola F, Morando C, Menniti-Ippolito F, Da Cas R, Capuano A, Perilongo G, Da Dalt L (2010) Association between drug and vaccine use and acute immune thrombocytopenia in childhood: a case–control study in Italy. Drug Saf 33(1):65–72

    Article  PubMed  CAS  Google Scholar 

  17. Andersohn F, Bronder E, Klimpel A, Garbe E (2004) Proportion of drug-related serious rare blood dyscrasias: estimates from the Berlin Case–control Surveillance Study. Am J Hematol 77(3):316–318

    Article  PubMed  Google Scholar 

  18. George JN, Woolf SH, Raskob GE, Wasser JS, Aledort LM, Ballem PJ, Blanchette VS, Bussel JB, Cines DB, Kelton JG, Lichtin AE, McMillan R, Okerbloom JA, Regan DH, Warrier I (1996) Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology. Blood 88(1):3–40

    PubMed  CAS  Google Scholar 

  19. The Uppsala Monitoring Centre. The use of the WHO-UMC system for standardised case causality assessment. http://www.who-umc.org/Graphics/24734.pdf. Accessed 13 September 2011

  20. World Health Organization. The Anatomical Therapeutic Chemical Classification System with Defined Daily Doses (ATC/DDD). http://www.who.int/classifications/atcddd/en/. Accessed 13 September 2011

  21. Kiefel V, Santoso S, Weisheit M, Mueller-Eckhardt C (1987) Monoclonal antibody–specific immobilization of platelet antigens (MAIPA): a new tool for the identification of platelet-reactive antibodies. Blood 70(6):1722–1726

    PubMed  CAS  Google Scholar 

  22. Kiefel V (1992) The MAIPA assay and its applications in immunohaematology. Transfus Med 2(3):181–188

    Article  PubMed  CAS  Google Scholar 

  23. Meyer O, Gaedicke G, Salama A (1999) Demonstration of drug-dependent antibodies in two patients with neutrophenia and successful treatment with granulocyte-colony-stimulating factor. Transfusion 39(5):527–530

    Article  PubMed  CAS  Google Scholar 

  24. Schwabe U, Paffrath D (2009) Arzneiverordnungsreport 2009. Springer Medizin Verlag, Heidelberg

    Book  Google Scholar 

  25. Said SM, Hahn J, Schleyer E, Muller M, Fiedler GM, Buerke M, Prondzinsky R (2007) Glycoprotein IIb/IIIa inhibitor-induced thrombocytopenia: diagnosis and treatment. Clin Res Cardiol 96(2):61–69

    Article  PubMed  CAS  Google Scholar 

  26. Curtis BR, Swyers J, Divgi A, McFarland JG, Aster RH (2002) Thrombocytopenia after second exposure to abciximab is caused by antibodies that recognize abciximab-coated platelets. Blood 99(6):2054–2059

    Article  PubMed  CAS  Google Scholar 

  27. Jubelirer SJ, Koenig BA, Bates MC (1999) Acute profound thrombocytopenia following C7E3 Fab (Abciximab) therapy: case reports, review of the literature and implications for therapy. Am J Hematol 61(3):205–208

    Article  PubMed  CAS  Google Scholar 

  28. Vahdat B, Canavy I, Fourcade L, Garcia E, Quilici J, Bonnet JL, Bory M (2000) Fatal cerebral hemorrhage and severe thrombocytopenia during abciximab treatment. Catheter Cardiovasc Interv 49(2):177–180

    Article  PubMed  CAS  Google Scholar 

  29. Coons JC, Barcelona RA, Freedy T, Hagerty MF (2005) Eptifibatide-associated acute, profound thrombocytopenia. Ann Pharmacother 39(2):368–372

    Article  PubMed  Google Scholar 

  30. Curtis BR, Divgi A, Garritty M, Aster RH (2004) Delayed thrombocytopenia after treatment with abciximab: a distinct clinical entity associated with the immune response to the drug. J Thromb Haemost 2(6):985–992

    Article  PubMed  CAS  Google Scholar 

  31. Nurden P, Clofent-Sanchez G, Jais C, Bermejo E, Leroux L, Coste P, Nurden AT (2004) Delayed immunologic thrombocytopenia induced by abciximab. Thromb Haemost 92(4):820–828

    PubMed  CAS  Google Scholar 

  32. Dickson HG (1978) Trimethoprim-sulphamethoxazole and thrombocytopenia. Med J Aust 2(1):5–7

    PubMed  CAS  Google Scholar 

  33. Keisu M, Wiholm BE, Palmblad J (1990) Trimethoprim-sulphamethoxazole-associated blood dyscrasias. Ten years' experience of the Swedish spontaneous reporting system. J Intern Med 228(4):353–360

    Article  PubMed  CAS  Google Scholar 

  34. Rothman KJ (1981) Induction and latent periods. Am J Epidemiol 114(2):253–259

    PubMed  CAS  Google Scholar 

  35. Leach MF, Aubuchon JP (1999) Frequency of thrombocytopenia associated with gentamicin therapy. Immunohematology 15(4):167–170

    PubMed  CAS  Google Scholar 

  36. Wraith DC, Goldman M, Lambert PH (2003) Vaccination and autoimmune disease: what is the evidence? Lancet 362(9396):1659–1666

    Article  PubMed  CAS  Google Scholar 

  37. Jadavji T, Scheifele D, Halperin S (2003) Thrombocytopenia after immunization of Canadian children, 1992 to 2001. Pediatr Infect Dis J 22(2):119–122

    PubMed  Google Scholar 

  38. Casoli P, Tumiati B (1989) Acute idiopathic thrombocytopenic purpura after anti-influenza vaccination. Medicina (Firenze) 9(4):417–418

    CAS  Google Scholar 

  39. Ikegame K, Kaida K, Fujioka T, Kawakami M, Hasei H, Inoue T, Taniguchi Y, Yoshihara S, Hayashi S, Kurata Y, Ogawa H (2006) Idiopathic thrombocytopenic purpura after influenza vaccination in a bone marrow transplantation recipient. Bone Marrow Transplant 38(4):323–324

    Article  PubMed  CAS  Google Scholar 

  40. Tishler M, Levy O, Amit-Vazina M (2006) Immune thrombocytopenic purpura following influenza vaccination. Isr Med Assoc J 8(5):322–323

    PubMed  Google Scholar 

  41. Wagner K (1964) Protrahierte Thrombozytopenie nach Polymyelitis Schutzimpfung. Wien Med Wochenschr 114:628–631

    PubMed  CAS  Google Scholar 

  42. Wise RP, Iskander J, Pratt RD, Campbell S, Ball R, Pless RP, Braun MM (2004) Postlicensure safety surveillance for 7-valent pneumococcal conjugate vaccine. JAMA 292(14):1702–1710

    Article  PubMed  CAS  Google Scholar 

  43. Altintas E, Oguz D, Kacar S, Ozderin Y, Sezgin O, Zengin NI (2004) Dydrogesterone-induced hepatitis and autoimmune hemolytic anemia. Turk J Gastroenterol 15(1):49–52

    PubMed  Google Scholar 

  44. Kacar S, Akdogan M, Kosar Y, Parlak E, Sasmaz N, Oguz P, Aydog G (2002) Estrogen and cyproterone acetate combination-induced autoimmune hepatitis. J Clin Gastroenterol 35(1):98–100

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Cases were collected within the study “Berlin Case–Control Surveillance (FAKOS) of Serious Blood Dyscrasias”, which is supported by a grant from the Federal Institute for Drugs and Medical Devices (Bonn, Germany). We wish to thank all the hospitals that contributed cases and controls to this study. A list of all the hospitals is provided in a separate Appendix.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edeltraut Garbe.

Appendix: list of all hospitals contributing cases and controls to this study

Appendix: list of all hospitals contributing cases and controls to this study

Bundeswehrkrankenhaus, Caritas-Klinik Maria Heimsuchung, Charité Universitätsmedizin Berlin Campus Benjamin Franklin, Charité Universitätsmedizin Berlin Campus Mitte, Charité Universitätsmedizin Berlin Campus Virchow-Klinikum, Deutsches Herzzentrum Berlin (DHZB), Dominikus-Krankenhaus, DRK Kliniken Berlin-Köpenick, DRK Kliniken Berlin-Mitte, DRK Kliniken Berlin-Westend, Evangelische Elisabeth-Klinik, Evangelisches Geriatriezentrum Berlin (EGZB), Evangelisches Krankenhaus Hubertus, Evangelisches Krankenhaus Königin Elisabeth-Herzberge, Evangelisches Waldkrankenhaus, Evangelische Lungenklinik Berlin, Franziskus-Krankenhaus, Friedrich von Bodelschwingh-Klinik, Gemeinschaftskrankenhaus Havelhöhe, HELIOS Klinikum Berlin Buch, HELIOS Zentralklinik Emil von Behring, Immanuel-Krankenhaus Rheumaklinik Berlin-Wannsee, Immanuel-Krankenhaus Rheumaklinik Berlin-Buch, Jüdisches Krankenhaus, Kliniken im Theodor-Wenzel-Werk, Krankenhaus Bethel, Krankenhaus Hedwigshöhe, Krankenhaus des Maßregelvollzugs, Krankenhaus Waldfriede, Malteser Krankenhaus, Martin-Luther Krankenhaus, Park-Klinik Weißensee, Paulinenkrankenhaus, Sana Klinikum Lichtenberg, Schlosspark-Klinik, St. Gertrauden Krankenhaus, St. Hedwig Krankenhaus, St. Joseph-Krankenhaus, St. Joseph-Krankenhaus Berlin-Weißensee, St. Marien Krankenhaus, Unfallkrankenhaus Berlin, Vivantes Auguste-Viktoria Klinikum, Vivantes Humboldt Klinikum, Vivantes Klinikum am Urban, Vivantes Klinikum im Friedrichshain, Vivantes Klinikum Hellersdorf, Vivantes Klinikum Neukölln, Vivantes Klinikum Prenzlauer Berg, Vivantes Klinikum Spandau, Vivantes Wenckebach-Klinikum, Wichern Krankenhaus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbe, E., Andersohn, F., Bronder, E. et al. Drug-induced immune thrombocytopaenia: results from the Berlin Case–Control Surveillance Study. Eur J Clin Pharmacol 68, 821–832 (2012). https://doi.org/10.1007/s00228-011-1184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1184-3

Keywords

Navigation