Skip to main content
Log in

The role of diet on the clinical pharmacology of oral antineoplastic agents

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The number of oral anticancer agents has greatly increased in recent years. It is a well-known fact that food intake can induce significant variations in the bioavailability of these drugs. The aim of this review is to describe the interactions between diet and oral anticancer drugs in terms of the possible effects of such interactions on reducing the antineoplastic activity of the drug or increasing its side effects.

Methods

This was an analytical study of the numerous mechanisms leading to changes in the bioavailability of oral antineoplastic agents due to diet.

Results

Food–drug interactions can induce a delay, decrease or increase in the absorption of the oral chemotherapeutic agent. The concomitant intake of food and antineoplastic drugs influence the pharmacokinetic and pharmacodynamic drug processes depending on the composition of the food consumed and the specific interactions of the food with transport mechanisms (p-glycoprotein, multidrug resistance proteins) and intestinal enzymatic systems (cytochrome P450).

Conclusions

In prescribing an oral anticancer agent, clinicians must consider the possibility that the consumption of specific food items has the potential to interfere with the pharmacokinetics and pharmacodynamics of the prescribed drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeMario MD, Ratain MJ (1998) Oral chemotherapy: rationale and future directions. J Clin Oncol 16:2557–2567

    PubMed  CAS  Google Scholar 

  2. Kuppens IE, Breedveld P, Beijnen JH, Schellens JH (2005) Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest 23:443–464

    PubMed  CAS  Google Scholar 

  3. Singh BN, Malhotra BK (2004) Effects of food on the clinical pharmakinetics of anticancer agents. Clin Pharmacokinet 43:1127–1156

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt LE, Dalhoff K (2002) Food-drug interactions. Drugs 62:1481–1502

    Article  PubMed  CAS  Google Scholar 

  5. Toffoli G, Corona G, Sorio R et al (2001) Population pharmacokinetics and pharmacodynamics of oral etoposide. Br J Clin Pharmacol 52:511–519

    Article  PubMed  CAS  Google Scholar 

  6. Fleisher D, Li C, Zhou Y, Pao LH, Karim A (1999) Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet 36:233–254

    Article  PubMed  CAS  Google Scholar 

  7. Wu CY, Benet LZ, Hebert MF et al (1995) Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 58(5):492–497

    Article  PubMed  CAS  Google Scholar 

  8. Rowland M, Tozer TN (eds) (1995) Clinical pharmacokinetics, 3rd edn. Williams & Wilkins, Philadelphia

    Google Scholar 

  9. Chaudhuri TK, Fink S (1990) Update: pharmaceuticals and gastric emptying. Am J Gastroenterol 85(3):223–230

    PubMed  CAS  Google Scholar 

  10. Ehrsson H, Wallin I, Simonsson B, Hartvig P, Oberg G (1984) Effect of food on pharmacokinetics of chlorambucil and its main metabolite, phenylacetic acid mustard. Eur J Clin Pharmacol 27(1):111–114

    PubMed  CAS  Google Scholar 

  11. Wilkinson GR (1997) The effects of diet, aging and disease-states on presystemic elimination and oral drug bioavailability in humans. Adv Drug Deliv Rev 27(2–3):129–159

    Article  PubMed  CAS  Google Scholar 

  12. Reece PA, Kotasek D, Morris RG, Dale BM, Sage RE (1986) The effect of food on oral melphalan absorption. Cancer Chemother Pharmacol 16(2):194–197

    Article  PubMed  CAS  Google Scholar 

  13. Gebbia V, Puozzo C (2005) Oral versus intravenous vinorelbine: clinical safety profile. Expert Opin Drug Saf 4(5):915–928

    Article  PubMed  CAS  Google Scholar 

  14. Rowinsky EK, Lucas VS, Hsieh AL et al (1996) The effects of food and divided dosing on the bioavailability of oral vinorelbine. Cancer Chemother Pharmacol 39(1–2):9–16

    Article  PubMed  CAS  Google Scholar 

  15. Singh BN (1999) Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 37:213–255

    Article  PubMed  CAS  Google Scholar 

  16. Söderlund MB, Sjöberg A, Svärd G, Fex G, Nilsson-Ehle P (2002) Biological variation of retinoids in man. Scand J Clin Lab Invest 62(7):511–519

    Article  PubMed  Google Scholar 

  17. Berggren Söderlund M, Fex G, Nilsson-Ehle P (2003) Decreasing serum concentrations of all-trans, 13-cis retinoic acids and retinol during fasting and caloric restriction. J Intern Med 253(3):375–380

    Article  PubMed  Google Scholar 

  18. de Lemos ML, Hamata L, Jennings S, Leduc T (2007) Interaction between mercaptopurine and milk. J Oncol Pharm Pract 13(4):237–240

    Article  PubMed  Google Scholar 

  19. Sofianou-Katsoulis A, Khakoo G, Kaczmarski R (2006) Reduction in bioavailability of 6-mercaptopurine on simultaneous administration with cow's milk. Pediatr Hematol Oncol 23(6):485–487

    Article  PubMed  Google Scholar 

  20. Adair CG, McElnay JC (1987) The effect of dietary amino acids on the gastrointestinal absorption of melphalan and chlorambucil. Cancer Chemother Pharmacol 19(4):343–346

    Article  PubMed  CAS  Google Scholar 

  21. Schellens JHM, Malingré MM, Kruijtzer CMF et al (2000) Modulation of oral bioavailability of anticancer drugs: from mouse to man. Eur J Pharm Sci 12:103–110

    Article  PubMed  CAS  Google Scholar 

  22. Nelson DR (2006) Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10

    PubMed  CAS  Google Scholar 

  23. Van Schaik RHN (2008) CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resistance Updates 11:77–98

    Article  PubMed  Google Scholar 

  24. Lin JH (2006) CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm Res 23(6):1089–1116

    Article  PubMed  CAS  Google Scholar 

  25. Sidhu S, Malhotra S, Garg SK (2004) Influence of high fat diet (butter) on pharmacokinetics of phenytoin and carbamazepine. Methods Find Exp Clin Pharmacol 26(8):634–638

    Article  PubMed  CAS  Google Scholar 

  26. Mäntylä R, Ailio A, Allonen H, Kanto J (1978) Bioavailability and effect of food on the gastrointestinal absorption of two erythromycin derivatives. Ann Clin Res 10:258–262

    PubMed  Google Scholar 

  27. Daneshmend TK, Warnock DW, Ene MD et al (1984) Influence of food on the pharmacokinetics of ketoconazole. Antimicrob Agents Chemother 25:151–158

    Google Scholar 

  28. Kane GC, Lipsky JJ (2000) Drug-grapefruit juice interactions. Mayo Clin Proc 75:933–942

    Article  PubMed  CAS  Google Scholar 

  29. Malhotra S, Bailey DG, Paine MF, Watkins PB (2001) Seville orange juice-felodipine interaction: comparison with dilute grapefruit juice and involvement of furocoumarins. Clin Pharmacol Ther 69(1):14–23

    Article  PubMed  CAS  Google Scholar 

  30. Tsunoda SM, Harris RZ, Christians U et al (2001) Red wine decreases cyclosporine bioavailability. Clin Pharmacol Ther 70(5):462–467

    Article  PubMed  CAS  Google Scholar 

  31. Larsen JT, Brosen K (2005) Consumption of charcoal-broiled meat as an experimental tool for discerning CYP1A2-mediated drug metabolism in vivo. Basic Clin Pharmacol Toxicol 97:141–148

    Article  PubMed  CAS  Google Scholar 

  32. Fujita K (2004) Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metabol Drug Interact 20(4):195–217

    Article  PubMed  CAS  Google Scholar 

  33. Tang C, Lin JH, Lu AY (2005) Metabolism-based drug-drug interactions: what determines individual variability in cytochrome P450 induction? Drug Metab Dispos 33:603–613

    Article  PubMed  CAS  Google Scholar 

  34. Zhou S, Chan E, Lim LY et al (2004) Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome P450 3A4. Curr Drug Metab 5:415–442

    Article  PubMed  CAS  Google Scholar 

  35. Zhou S, Chan E, Duan W et al (2005) Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 37:41–213

    PubMed  CAS  Google Scholar 

  36. Zhou S, Yung Chan S, Cher Goh B et al (2005) Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 44:279–304

    Article  PubMed  CAS  Google Scholar 

  37. Hedman A, Meijer DK (1998) The stereoisomers quinine and quinidine exhibit a marked stereoselectivity in the inhibition of hepatobiliary transport of cardiac glycosides. J Hepatol 28(2):240–249

    Article  PubMed  CAS  Google Scholar 

  38. Koren G, Woodland C, Ito S (1998) Toxic digoxin-drug interactions: the major role of renal P- glycoprotein. Vet Hum Toxicol 40(1):45–46

    PubMed  CAS  Google Scholar 

  39. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68(3):231–237

    Article  PubMed  CAS  Google Scholar 

  40. Sukhai M, Piquette-Miller M (2000) Regulation of the multidrug resistance genes by stress signals. J Pharm Pharm Sci 3(2):268–280

    PubMed  CAS  Google Scholar 

  41. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  42. Leslie EM, Ito K, Upadhyaya P, Hecht SS, Deeley RG, Cole SP (2001) Transport of the b-O-glucuronide conjugate of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by the multidrug resistance protein 1 (MRP1). Requirement for glutathione or a nonsulfur-containing analog. J Biol Chem 276:27846–27854

    Article  PubMed  CAS  Google Scholar 

  43. Hammond CL, Marchan R, Krance SM, Ballatori N (2007) Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J Biol Chem 282:14337–14347

    Article  PubMed  CAS  Google Scholar 

  44. Zhou SF, Wang LL, Di YM et al (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039

    Article  PubMed  CAS  Google Scholar 

  45. Reif S, Nicolson MC, Bisset D et al (2002) Effect of grapefruit juice intake on etoposide bioavailability. Eur J Clin Pharmacol 58:491–494

    Article  PubMed  CAS  Google Scholar 

  46. Prados MD, Lamborn KR, Chang S et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol 8:67–78

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors report no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ruggiero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggiero, A., Cefalo, M.G., Coccia, P. et al. The role of diet on the clinical pharmacology of oral antineoplastic agents. Eur J Clin Pharmacol 68, 115–122 (2012). https://doi.org/10.1007/s00228-011-1102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1102-8

Keywords

Navigation