Skip to main content

Advertisement

Log in

The potential of cytokines as safety biomarkers for drug-induced liver injury

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Drug-induced liver injury (DILI) is an event that has a detrimental impact on drug development and patient safety; therefore the identification of novel biomarkers that are both sensitive and specific to the liver would have great benefit. Inflammation is known to be associated with human cases of DILI, and given the role of cytokines in modulating the inflammatory response, changes in cytokine expression patterns certainly show promise as potential biomarkers of DILI. Cytokines are interesting candidates for novel biomarkers as they are relatively accessible (by blood sampling) and accurately quantifiable. In particular, recent interest has developed in mechanism-specific, rather than tissue-specific, biomarkers. However, without fully understanding the role of inflammation in DILI and the role of cytokines in modulating the inflammatory response, cytokines may be limited in their use, being either diagnostic of the type of injury that has occurred and/or prognostic of outcome (recovery from DILI, cirrhosis, acute liver failure). Intracellular components released by damaged hepatocytes, although inaccessible and currently difficult to quantify, may be better biomarkers for the prognosis of severity of injury. In both cases there is a pressing need for the development and validation of assays sensitive enough and with a sufficient dynamic range to detect changes upon drug treatment. Although promising candidates are appearing in the literature, much remains to be done to understand the role of inflammation in DILI and the role that a given cytokine has in the inflammatory cascade associated with DILI before cytokines are viewed as biomarkers for DILI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–2220

    Article  PubMed  Google Scholar 

  2. Aithal GP, Rawlins MD, Day CP (1999) Accuracy of hepatic adverse drug reaction reporting in one English health region. BMJ 319:1541

    CAS  PubMed  Google Scholar 

  3. Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, Lenoir C, Lemoine A, Hillon P (2002) Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 36:451–455

    Article  PubMed  Google Scholar 

  4. Meier Y, Cavallaro M, Roos M, Pauli-Magnus C, Folkers G, Meier PJ, Fattinger K (2005) Incidence of drug-induced liver injury in medical inpatients. Eur J Clin Pharmacol 61:135–143

    Article  PubMed  Google Scholar 

  5. Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349(5):474–485

    Article  CAS  PubMed  Google Scholar 

  6. Hawton K, Ware C, Mistry H, Hewitt J, Kingsbury S, Roberts D, Weitzel H (1995) Why patients choose paracetamol for self poisoning and their knowledge of its dangers. BMJ 310:164

    CAS  PubMed  Google Scholar 

  7. Olsen H, Betton G, Robinson D, Thomas K, Monro A, Koaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicology of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  Google Scholar 

  8. Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105

    Article  CAS  PubMed  Google Scholar 

  9. Watkins PB, Seligman PJ, Pears JS, Avigan MI, Senior JR (2008) Using controlled clinical trials to learn more about acute drug-induced liver injury. Hepatology 48:1680–1689

    Article  PubMed  Google Scholar 

  10. Bessems JG, Vermeulen NP (2001) Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31:55–138

    Article  CAS  PubMed  Google Scholar 

  11. Laskin DL, Pilaro AM (1986) Potential role of activated macrophages in acetaminophen hepatotoxicity. I. Isolation and characterization of activated macrophages from rat liver. Toxicol Appl Pharmacol 86:204–215

    Article  CAS  PubMed  Google Scholar 

  12. Laskin DL, Gardner CR, Price VF, Jollow DJ (1995) Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21:1045–1050

    Article  CAS  PubMed  Google Scholar 

  13. Michael SL, Pumford NR, Mayeux PR, Niesman MR, Hinson JA (1999) Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30:186–195

    Article  CAS  PubMed  Google Scholar 

  14. Mizuhara H, Kuno M, Seki N, Yu WG, Yamaoka M, Yamashita M, Ogawa T, Kaneda K, Fujii T, Senoh H, Fujiwara H (1998) Strain difference in the induction of T-cell activation-associated, interferon gamma-dependent hepatic injury in mice. Hepatology 27:513–519

    Article  CAS  PubMed  Google Scholar 

  15. Navarro VJ, Senior JR (2006) Drug-related hepatotoxicity. N Engl J Med 354:731–739

    Article  CAS  PubMed  Google Scholar 

  16. Antoine DJ, Mercer AE, Williams DP, Park BK (2009) Mechanism-based bioanalysis and biomarkers for hepatic chemical stress. Xenobiotica 39:565–577

    Article  CAS  PubMed  Google Scholar 

  17. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245:194–205

    Article  CAS  PubMed  Google Scholar 

  18. Cummings J, Ward TH, Greystoke A, Ranson M, Dive C (2008) Biomarker method validation in anticancer drug development. Br J Pharmacol 153:646–656

    Article  CAS  PubMed  Google Scholar 

  19. Lacour S, Gautier J-C, Pallardy M, Roberts R (2005) Cytokines as potential biomarkers of liver toxicity. Cancer Biomarkers 1:29–39

    CAS  PubMed  Google Scholar 

  20. Borish LC, Steinke JW (2003) Cytokines and chemokines. J Allergy Clin Immunol 111:S460–S475

    Article  CAS  PubMed  Google Scholar 

  21. Cameron MJ, Kelvin DJ (2003) Cytokines and chemokines–their receptors and their genes: an overview. Adv Exp Med Biol 520:8–32

    CAS  PubMed  Google Scholar 

  22. Ramadori G, Armbrust T (2001) Cytokines in the liver. Eur J Gastroenterol Hepatol 13:777–784

    Article  CAS  PubMed  Google Scholar 

  23. Antoine DJ, Williams DP, Kipar A, Jenkins RE, Sathish JG, Regan SL, Kitteringham NR, Park BK (2009) High mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo. Toxicol Sci 112:521–531

    Article  CAS  PubMed  Google Scholar 

  24. Blazka ME, Elwell MR, Holladay SD, Wilson RE, Luster MI (1996) Histopathology of acetaminophen-induced liver changes: role of interleukin 1 alpha and tumor necrosis factor alpha. Toxicol Pathol 24:181–189

    Article  CAS  PubMed  Google Scholar 

  25. Manfredi AA, Rovere-Querini P, Bottazzi B, Garlanda C, Mantovani A (2008) Pentraxins, humoral innate immunity and tissue injury. Curr Opin Immunol 20:538–544

    Article  CAS  PubMed  Google Scholar 

  26. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA et al (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Investig 119:305–314

    CAS  PubMed  Google Scholar 

  27. Masubuchi Y, Bourdi M, Reilly TP, Graf ML, George JW, Pohl LR (2003) Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem Biophys Res Commun 304:207–212

    Article  CAS  PubMed  Google Scholar 

  28. Shaw PJ, Ganey PE, Roth RA (2009) Tumor necrosis factor alpha is a proximal mediator of synergistic hepatotoxicity from trovafloxacin/lipopolysaccharide coexposure. J Pharmacol Exp Ther 328:62–68

    Article  CAS  PubMed  Google Scholar 

  29. Deng X, Stachlewitz RF, Liguori MJ, Blomme EA, Waring JF, Luyendyk JP, Maddox JF et al (2006) Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. J Pharmacol Exp Ther 319:1191–1199

    Article  CAS  PubMed  Google Scholar 

  30. Luyendyk JP, Lehman-McKeeman LD, Nelson DM, Bhaskaran VM, Reilly TP, Car BD, Cantor GH et al (2006) Unique gene expression and hepatocellular injury in the lipopolysaccharide-ranitidine drug idiosyncrasy rat model: comparison with famotidine. Toxicol Sci 90:569–585

    Article  CAS  PubMed  Google Scholar 

  31. Martin-Murphy BV, Holt MP, Ju C (2010) The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol Lett 192:387–394

    Article  CAS  PubMed  Google Scholar 

  32. Foster GR (2009) Recent advances in viral hepatitis. Clin Med 9:613–616

    PubMed  Google Scholar 

  33. Lewis JR, Mohanty SR (2010) Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci 55:560–578

    Article  PubMed  Google Scholar 

  34. Reuben A (2006) Alcohol and the liver. Curr Opin Gastroenterol 22:263–271

    PubMed  Google Scholar 

  35. Teufel A, Galle PR, Kanzler S (2009) Update on autoimmune hepatitis. World J Gastroenterol 15:1035–1041

    Article  CAS  PubMed  Google Scholar 

  36. Heydtmann M, Adams DH (2009) Chemokines in the immunopathogenesis of hepatitis C infection. Hepatology 49:676–688

    Article  CAS  PubMed  Google Scholar 

  37. Szabo G, Mandrekar P, Dolganiuc A (2007) Innate immune response and hepatic inflammation. Semin Liver Dis 27:339–350

    Article  CAS  PubMed  Google Scholar 

  38. Guidotti LG, Chisari FV (2001) Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19:65–91

    Article  CAS  PubMed  Google Scholar 

  39. Rehermann B (2007) Chronic infections with hepatotropic viruses: mechanisms of impairment of cellular immune responses. Semin Liver Dis 27:152–160

    Article  CAS  PubMed  Google Scholar 

  40. Wang FS (2007) Clinical immune characterization of hepatitis B virus infection and implications for immune intervention: progress and challenges. Hepatol Res 37(Suppl 3):S339–S346

    Article  CAS  PubMed  Google Scholar 

  41. Dustin LB, Rice CM (2007) Flying under the radar: the immunobiology of hepatitis C. Annu Rev Immunol 25:71–99

    Article  CAS  PubMed  Google Scholar 

  42. Rehermann B, Nascimbeni M (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5:215–229

    Article  CAS  PubMed  Google Scholar 

  43. Kudo S, Matsuno K, Ezaki T, Ogawa M (1997) A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J Exp Med 185:777–784

    Article  CAS  PubMed  Google Scholar 

  44. Decalf J, Fernandes S, Longman R, Ahloulay M, Audat F, Lefrerre F, Rice CM, Pol S, Albert ML (2007) Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients. J Exp Med 204:2423–2437

    Article  CAS  PubMed  Google Scholar 

  45. Szabo G, Dolganiuc A (2005) Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection. Immunobiology 210:237–247

    Article  CAS  PubMed  Google Scholar 

  46. Polyak SJ, Khabar KS, Rezeiq M, Gretch DR (2001) Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J Virol 75:6209–6211

    Article  CAS  PubMed  Google Scholar 

  47. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3:e113

    Article  PubMed  CAS  Google Scholar 

  48. Salazar-Mather TP, Hokeness KL (2006) Cytokine and chemokine networks: pathways to antiviral defense. Curr Top Microbiol Immunol 303:29–46

    Article  CAS  PubMed  Google Scholar 

  49. Heydtmann M, Hardie D, Shields PL, Faint J, Buckley CD, Campbell JJ, Salmon M, Adams DH (2006) Detailed analysis of intrahepatic CD8 T cells in the normal and hepatitis C-infected liver reveals differences in specific populations of memory cells with distinct homing phenotypes. J Immunol 177:729–738

    CAS  PubMed  Google Scholar 

  50. Ajuebor MN, Hogaboam CM, Le T, Proudfoot AE, Swain MG (2004) CCL3/MIP-1alpha is pro-inflammatory in murine T cell-mediated hepatitis by recruiting CCR1-expressing CD4(+) T cells to the liver. Eur J Immunol 34:2907–2918

    Article  CAS  PubMed  Google Scholar 

  51. Butera D, Marukian S, Iwamaye AE, Hembrador E, Chambers TJ, Di Bisceglie AM, Charles ED, Talal AH, Jacobson IM, Rice CM, Dustin LB (2005) Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 106:1175–1182

    Article  CAS  PubMed  Google Scholar 

  52. Larrubia JR, Calvino M, Benito S, Sanz-de-Villalobos E, Perna C, Pérez-Hornedo J, González-Mateos F, García-Garzón S, Bienvenido A, Parra T (2007) The role of CCR5/CXCR3 expressing CD8+ cells in liver damage and viral control during persistent hepatitis C virus infection. J Hepatol 47:632–641

    Article  CAS  PubMed  Google Scholar 

  53. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS (2010) Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51:81–91

    CAS  PubMed  Google Scholar 

  54. O'Quinn DB, Palmer MT, Lee YK, Weaver CT (2008) Emergence of the Th17 pathway and its role in host defense. Adv Immunol 99:115–163

    Article  PubMed  CAS  Google Scholar 

  55. Ge J, Wang K, Meng QH, Qi ZX, Meng FL, Fan YC (2010) Implication of Th17 and Th1 cells in patients with chronic active hepatitis B. J Clin Immunol 30:60–67

    Article  CAS  PubMed  Google Scholar 

  56. Godkin A, Ng WF, Gallagher K, Betts G, Thomas HC, Lechler RI (2008) Expansion of hepatitis C-specific CD4 + CD25+ regulatory T cells after viral clearance: a mechanism to limit collateral damage? J Allergy Clin Immunol 121:1277–1284

    Article  CAS  PubMed  Google Scholar 

  57. Rushbrook SM, Ward SM, Unitt E, Vowler SL, Lucas M, Klenerman P, Alexander GJ (2005) Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol 79:7852–7859

    Article  CAS  PubMed  Google Scholar 

  58. Lagging M, Romero AI, Westin J, Norkrans G, Dhillon AP, Pawlotsky JM, Zeuzem S, von Wagner M, Negro F, Schalm SW, Haagmans BL, Ferrari C, Missale G, Neumann AU, Verheij-Hart E, Hellstrand K, DITTO-HCV Study Group (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology 44:1617–1625

    Article  CAS  PubMed  Google Scholar 

  59. Saadoun D, Bieche I, Maisonobe T, Asselah T, Laurendeau I, Piette JC, Vidaud M, Cacoub P (2005) Involvement of chemokines and type 1 cytokines in the pathogenesis of hepatitis C virus-associated mixed cryoglobulinemia vasculitis neuropathy. Arthritis Rheum 52:2917–2925

    Article  CAS  PubMed  Google Scholar 

  60. Ronis MJ, Butura A, Korourian S, Shankar K, Simpson P, Badeaux J, Albano E, Ingelman-Sundberg M, Badger TM (2008) Cytokine and chemokine expression associated with steatohepatitis and hepatocyte proliferation in rats fed ethanol via total enteral nutrition. Exp Biol Med (Maywood) 233:344–355

    Article  CAS  Google Scholar 

  61. Bautista AP (2002) Neutrophilic infiltration in alcoholic hepatitis. Alcohol 27:17–21

    Article  CAS  PubMed  Google Scholar 

  62. Hines IN, Wheeler MD (2004) Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol 287:G310–G314

    Article  CAS  PubMed  Google Scholar 

  63. Latvala J, Hietala J, Koivisto H, Järvi K, Anttila P, Niemelä O (2005) Immune responses to ethanol metabolites and cytokine profiles differentiate alcoholics with or without liver disease. Am J Gastroenterol 100:1303–1310

    Article  CAS  PubMed  Google Scholar 

  64. Mandrekar P, Szabo G (2009) Signalling pathways in alcohol-induced liver inflammation. J Hepatol 50:1258–1266

    Article  CAS  PubMed  Google Scholar 

  65. Rao R (2009) Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 50:638–644

    Article  CAS  PubMed  Google Scholar 

  66. Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C, Franchimont D, Louis H, Devière J, Le Moine O (2006) Differential liver sensitization to Toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43:989–1000

    Article  CAS  PubMed  Google Scholar 

  67. McMullen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE (2005) Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice. Gastroenterology 128:2066–2076

    Article  CAS  PubMed  Google Scholar 

  68. Nagy LE (2003) Recent insights into the role of the innate immune system in the development of alcoholic liver disease. Exp Biol Med (Maywood) 228:882–890

    CAS  Google Scholar 

  69. Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE (2006) Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol 79:1348–1356

    Article  CAS  PubMed  Google Scholar 

  70. Chedid A, Chadalawada KR, Morgan TR, Moritz TE, Mendenhall CL, Hammond JB, Emblad PW, Cifuentes DC, Kwak JW, Gilman-Sachs A et al (1994) Phospholipid antibodies in alcoholic liver disease. Hepatology 20:1465–1471

    Article  CAS  PubMed  Google Scholar 

  71. Laso FJ, Iglesias-Osma C, Ciudad J, López A, Pastor I, Orfao A (1999) Chronic alcoholism is associated with an imbalanced production of Th-1/Th-2 cytokines by peripheral blood T cells. Alcohol Clin Exp Res 23:1306–1311

    CAS  PubMed  Google Scholar 

  72. Lemmers A, Moreno C, Gustot T, Maréchal R, Degré D, Demetter P, de Nadai P, Geerts A, Quertinmont E, Vercruysse V, Le Moine O, Devière J (2009) The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49:646–657

    Article  CAS  PubMed  Google Scholar 

  73. Yasumi Y, Takikawa Y, Endo R, Suzuki K (2007) Interleukin-17 as a new marker of severity of acute hepatic injury. Hepatol Res 37:248–254

    Article  CAS  PubMed  Google Scholar 

  74. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  CAS  PubMed  Google Scholar 

  75. Ramaiah SK, Rittling S (2007) Role of osteopontin in regulating hepatic inflammatory responses and toxic liver injury. Expert Opin Drug Metab Toxicol 3:519–526

    Article  CAS  PubMed  Google Scholar 

  76. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  CAS  PubMed  Google Scholar 

  77. Lago F, Dieguez C, Gómez-Reino J, Gualillo O (2007) Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol 3:716–724

    Article  CAS  PubMed  Google Scholar 

  78. Naveau S, Perlemuter G, Chaillet M, Raynard B, Balian A, Beuzen F, Portier A, Galanaud P, Emilie D, Chaput JC (2006) Serum leptin in patients with alcoholic liver disease. Alcohol Clin Exp Res 30:1422–1428

    Article  CAS  PubMed  Google Scholar 

  79. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE (2007) Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 31:1581–1588

    Article  CAS  PubMed  Google Scholar 

  80. Song Z, Zhou Z, Deaciuc I, Chen T, McClain CJ (2008) Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease. Hepatology 47:867–879

    Article  CAS  PubMed  Google Scholar 

  81. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    CAS  PubMed  Google Scholar 

  82. Verma BK, Fogarasi M, Szabo G (1993) Down-regulation of tumor necrosis factor alpha activity by acute ethanol treatment in human peripheral blood monocytes. J Clin Immunol 13:8–22

    Article  CAS  PubMed  Google Scholar 

  83. Szabo G, Mandrekar P, Girouard L, Catalano D (1996) Regulation of human monocyte functions by acute ethanol treatment: decreased tumor necrosis factor-alpha, interleukin-1 beta and elevated interleukin-10, and transforming growth factor-beta production. Alcohol Clin Exp Res 20:900–907

    Article  CAS  PubMed  Google Scholar 

  84. Szabo G, Chavan S, Mandrekar P, Catalano D (1999) Acute alcohol consumption attenuates interleukin-8 (IL-8) and monocyte chemoattractant peptide-1 (MCP-1) induction in response to ex vivo stimulation. J Clin Immunol 19:67–76

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Z, Bagby GJ, Stoltz D, Oliver P, Schwarzenberger PO, Kolls JK (2001) Prolonged ethanol treatment enhances lipopolysaccharide/phorbol myristate acetate-induced tumor necrosis factor-alpha production in human monocytic cells. Alcohol Clin Exp Res 25:444–449

    CAS  PubMed  Google Scholar 

  86. Yin M, Wheeler MD, Kono H, Bradford BU, Gallucci RM, Luster MI, Thurman RG (1999) Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117:942–952

    Article  CAS  PubMed  Google Scholar 

  87. Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G (2009) The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. J Immunol 183:1320–1327

    Article  CAS  PubMed  Google Scholar 

  88. Román J, Colell A, Blasco C, Caballeria J, Parés A, Rodés J, Fernández-Checa JC (1999) Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB. Hepatology 30:1473–1480

    Article  PubMed  Google Scholar 

  89. Boelsterli UA, Bedoucha M (2002) Toxicological consequences of altered peroxisome proliferator-activated receptor gamma (PPARgamma) expression in the liver: insights from models of obesity and type 2 diabetes. Biochem Pharmacol 63:1–10, Review

    Article  CAS  PubMed  Google Scholar 

  90. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE (2002) ERK1/2 and Egr-1 contribute to increased TNF-alpha production in rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol 282:G6–G15

    CAS  PubMed  Google Scholar 

  91. Holt MP, Ju C (2006) Mechanisms of drug-induced liver injury. AAPS J 8:E48–E54

    Article  CAS  PubMed  Google Scholar 

  92. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187:185–194

    CAS  PubMed  Google Scholar 

  93. Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML, Jaeschke H (2006) Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98–107

    Article  CAS  PubMed  Google Scholar 

  94. Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H (2000) The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 54:509–516

    Article  CAS  PubMed  Google Scholar 

  95. Bauer I, Vollmar B, Jaeschke H, Rensing H, Kraemer T, Larsen R, Bauer M (2000) Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. J Hepatol 33:395–406

    Article  CAS  PubMed  Google Scholar 

  96. Smith GS, Nadig DE, Kokoska ER, Solomon H, Tiniakos DG, Miller TA (1998) Role of neutrophils in hepatotoxicity induced by oral acetaminophen administration in rats. J Surg Res 80:252–258

    Article  CAS  PubMed  Google Scholar 

  97. Gardner CR, Laskin JD, Dambach DM, Sacco M, Durham SK, Bruno MK, Cohen SD, Gordon MK, Gerecke DR, Zhou P, Laskin DL (2002) Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol Appl Pharmacol 184:27–36

    Article  CAS  PubMed  Google Scholar 

  98. Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, Pohl LR (2002) Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 15:1504–1513

    Article  CAS  PubMed  Google Scholar 

  99. Goldin RD, Ratnayaka ID, Breach CS, Brown IN, Wickramasinghe SN (1996) Role of macrophages in acetaminophen (paracetamol)-induced hepatotoxicity. J Pathol 179:432–435

    Article  CAS  PubMed  Google Scholar 

  100. Liu ZX, Govindarajan S, Kaplowitz N (2004) Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127:1760–1774

    Article  CAS  PubMed  Google Scholar 

  101. Jaeschke H (2006) How relevant are neutrophils for acetaminophen hepatotoxicity? Hepatology 43:1191–1194

    Article  CAS  PubMed  Google Scholar 

  102. Masson MJ, Carpenter LD, Graf ML, Pohl LR (2008) Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology 48:889–897

    Article  CAS  PubMed  Google Scholar 

  103. Boess F, Bopst M, Althaus R, Polsky S, Cohen SD, Eugster HP, Boelsterli UA (1998) Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-alpha gene knockout mice. Hepatology 27:1021–1029

    Article  CAS  PubMed  Google Scholar 

  104. Ishida Y, Kondo T, Tsuneyama K, Lu P, Takayasu T, Mukaida N (2004) The pathogenic roles of tumor necrosis factor receptor p55 in acetaminophen-induced liver injury in mice. J Leukoc Biol 75:59–67

    Article  CAS  PubMed  Google Scholar 

  105. Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI (1995) Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133:43–52

    Article  CAS  PubMed  Google Scholar 

  106. Ishibe T, Kimura A, Ishida Y, Takayasu T, Hayashi T, Tsuneyama K, Matsushima K, Sakata I, Mukaida N, Kondo T (2009) Reduced acetaminophen-induced liver injury in mice by genetic disruption of IL-1 receptor antagonist. Lab Invest 89:68–79

    Article  CAS  PubMed  Google Scholar 

  107. Ishida Y, Kondo T, Ohshima T, Fujiwara H, Iwakura Y, Mukaida N (2002) A pivotal involvement of IFN-gamma in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J 16:1227–1236

    Article  CAS  PubMed  Google Scholar 

  108. Bourdi M, Eiras DP, Holt MP, Webster MR, Reilly TP, Welch KD, Pohl LR (2007) Role of IL-6 in an IL-10 and IL-4 double knockout mouse model uniquely susceptible to acetaminophen-induced liver injury. Chem Res Toxicol 20:208–216

    Article  CAS  PubMed  Google Scholar 

  109. Yohe HC, O'Hara KA, Hunt JA, Kitzmiller TJ, Wood SG, Bement JL, Bement WJ, Szakacs JG, Wrighton SA, Jacobs JM, Kostrubsky V, Sinclair PR, Sinclair JF (2006) Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity. Am J Physiol Gastrointest Liver Physiol 290:G1269–G1279

    Article  CAS  PubMed  Google Scholar 

  110. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119:305–314

    CAS  PubMed  Google Scholar 

  111. Ekong U, Zeng S, Dun H, Feirt N, Guo J, Ippagunta N, Guarrera JV, Lu Y, Weinberg A, Qu W, Ramasamy R, Schmidt AM, Emond JC (2006) Blockade of the receptor for advanced glycation end products attenuates acetaminophen-induced hepatotoxicity in mice. J Gastroenterol Hepatol 21:682–688

    Article  CAS  PubMed  Google Scholar 

  112. Liu ZX, Han D, Gunawan B, Kaplowitz N (2006) Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43:1220–1230

    Article  CAS  PubMed  Google Scholar 

  113. Maddox JF, Amuzie CJ, Li M, Newport SW, Sparkenbaugh E, Cuff CF, Pestka JJ, Cantor GH, Roth RA, Ganey PE (2009) Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity. J Toxicol Environ Health A 73:58–73

    Google Scholar 

  114. Bourdi M, Reilly TP, Elkahloun AG, George JW, Pohl LR (2002) Macrophage migration inhibitory factor in drug-induced liver injury: a role in susceptibility and stress responsiveness. Biochem Biophys Res Commun 294:225–230

    Article  CAS  PubMed  Google Scholar 

  115. Yee SB, Bourdi M, Masson MJ, Pohl LR (2007) Hepatoprotective role of endogenous interleukin-13 in a murine model of acetaminophen-induced liver disease. Chem Res Toxicol 20:734–744

    Article  CAS  PubMed  Google Scholar 

  116. Simpson KJ, Lukacs NW, McGregor AH, Harrison DJ, Strieter RM, Kunkel SL (2000) Inhibition of tumour necrosis factor alpha does not prevent experimental paracetamol-induced hepatic necrosis. J Pathol 190:489–494

    Article  CAS  PubMed  Google Scholar 

  117. Chiu H, Gardner CR, Dambach DM, Durham SK, Brittingham JA, Laskin JD, Laskin DL (2003) Role of tumor necrosis factor receptor 1 (p55) in hepatocyte proliferation during acetaminophen-induced toxicity in mice. Toxicol Appl Pharmacol 193:218–227

    Article  CAS  PubMed  Google Scholar 

  118. Gardner CR, Laskin JD, Dambach DM, Chiu H, Durham SK, Zhou P, Bruno M, Gerecke DR, Gordon MK, Laskin DL (2003) Exaggerated hepatotoxicity of acetaminophen in mice lacking tumor necrosis factor receptor-1. Potential role of inflammatory mediators. Toxicol Appl Pharmacol 192:119–130

    Article  CAS  PubMed  Google Scholar 

  119. Hewett JA, Jean PA, Kunkel SL, Roth RA (1993) Relationship between tumor necrosis factor-alpha and neutrophils in endotoxin-induced liver injury. Am J Physiol 265:G1011–G1015

    CAS  PubMed  Google Scholar 

  120. Hewett JA, Schultze AE, VanCise S, Roth RA (1992) Neutrophil depletion protects against liver injury from bacterial endotoxin. Lab Invest 66:347–361

    CAS  PubMed  Google Scholar 

  121. Tsukada S, Enomoto N, Takei Y, Hirose M, Ikejima K, Kitamura T, Sato N (2003) Dalteparin sodium prevents liver injury due to lipopolysaccharide in rat through suppression of tumor necrosis factor-alpha production by Kupffer cells. Alcohol Clin Exp Res 27:7S–11S

    Article  CAS  PubMed  Google Scholar 

  122. Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG (1994) Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 20:453–460

    Article  CAS  PubMed  Google Scholar 

  123. Wheeler MD, Kono H, Yin M, Nakagami M, Uesugi T, Arteel GE, Gabele E, Rusyn I, Yamashina S, Froh M, Adachi Y, Iimuro Y, Bradford BU, Smutney OM, Connor HD, Mason RP, Goyert SM, Peters JM, Gonzalez FJ, Samulski RJ, Thurman RG (2001) The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med 31:1544–1549

    Article  CAS  PubMed  Google Scholar 

  124. Arteel GE, Raleigh JA, Bradford BU, Thurman RG (1996) Acute alcohol produces hypoxia directly in rat liver tissue in vivo: role of Kupffer cells. Am J Physiol 271:G494–G500

    CAS  PubMed  Google Scholar 

  125. Labib R, Abdel-Rahman MS, Turkall R (2003) N-acetylcysteine pretreatment decreases cocaine and endotoxin-induced hepatotoxicity. J Toxicol Environ Health A 66:223–239

    Article  CAS  PubMed  Google Scholar 

  126. Labib R, Turkall R, Abdel-Rahman MS (2003) Endotoxin potentiates cocaine-mediated hepatotoxicity by nitric oxide and reactive oxygen species. Int J Toxicol 22:305–316

    Article  CAS  PubMed  Google Scholar 

  127. Tiegs G, Niehorster M, Wendel A (1990) Leukocyte alterations do not account for hepatitis induced by endotoxin or TNF alpha in galactosamine-sensitized mice. Biochem Pharmacol 40:1317–1322

    Article  CAS  PubMed  Google Scholar 

  128. Nowak M, Gaines GC, Rosenberg J, Minter R, Bahjat FR, Rectenwald J, MacKay SL, Edwards CK 3rd, Moldawer LL (2000) LPS-induced liver injury in D-galactosamine-sensitized mice requires secreted TNF-alpha and the TNF-p55 receptor. Am J Physiol Regul Integr Comp Physiol 278:R1202–R1209

    CAS  PubMed  Google Scholar 

  129. James LP, Simpson PM, Farrar HC, Kearns GL, Wasserman GS, Blumer JL, Reed MD, Sullivan JE, Hinson JA (2005) Cytokines and toxicity in acetaminophen overdose. J Clin Pharmacol 45:1165–1171

    Article  CAS  PubMed  Google Scholar 

  130. James LP, Farrar HC, Darville TL, Sullivan JE, Givens TG, Kearns GL, Wasserman GS, Simpson PM, Hinson JA, Pediatric Pharmacology Research Unit Network, National Institute of Child Health and Human Development (2001) Elevation of serum interleukin 8 levels in acetaminophen overdose in children and adolescents. Clin Pharmacol Ther 70:280–286

    Article  CAS  PubMed  Google Scholar 

  131. Williams AM, Langley PG, Osei-Hwediah J, Wendon JA, Hughes RD (2003) Hyaluronic acid and endothelial damage due to paracetamol-induced hepatotoxicity. Liver Int 23:110–115

    Article  CAS  PubMed  Google Scholar 

  132. Kerr R, Newsome P, Germain L, Thomson E, Dawson P, Stirling D, Ludlam CA (2003) Effects of acute liver injury on blood coagulation. J Thromb Haemost 1:754–759

    Article  CAS  PubMed  Google Scholar 

  133. Berry PA, Antoniades CG, Hussain MJ, McPhail MJ, Bernal W, Vergani D, Wendon JA (2010) Admission levels and early changes in serum interleukin-10 are predictive of poor outcome in acute liver failure and decompensated cirrhosis. Liver Int 30:733–740

    Article  CAS  PubMed  Google Scholar 

  134. Fannin RD, Russo M, O'Connell TM, Gerrish K, Winnike JH, Macdonald J, Newton J, Malik S, Sieber SO, Parker J, Shah R, Zhou T, Watkins PB, Paules RS (2010) Acetaminophen dosing of humans results in blood transcriptome and metabolome changes consistent with impaired oxidative phosphorylation. Hepatology 51:227–236

    CAS  PubMed  Google Scholar 

  135. Winnike JH, Li Z, Wright FA, Macdonald JM, O'Connell TM, Watkins PB (2010) Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin Pharmacol Ther. [Epub ahead of print]

  136. Li J, Zhu X, Liu F, Cai P, Sanders C, Lee WM, Uetrecht J (2009) Cytokine and autoantibody patterns in acute liver failure. J Immunotoxicol. [Epub ahead of print]

  137. Kenna JG (1997) Immunoallergic drug-induced hepatitis: lessons from halothane. J Hepatol 26(Suppl 1):5–12

    CAS  PubMed  Google Scholar 

  138. Vergani D, Mieli-Vergani G, Alberti A, Neuberger J, Eddleston AL, Davis M, Williams R (1980) Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. N Engl J Med 303:66–71

    Article  CAS  PubMed  Google Scholar 

  139. Bourdi M, Chen W, Peter RM, Martin JL, Buters JT, Nelson SD, Pohl LR (1996) Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem Res Toxicol 19:1159–1166

    Article  Google Scholar 

  140. Martin DC, Dennison RL, Introna RP, Aronstam RS (1991) Influence of halothane on the interactions of serotonin1A and adenosine A1 receptors with G proteins in rat brain membranes. Biochem Pharmacol 42:1313–1316

    Article  CAS  PubMed  Google Scholar 

  141. Martin JL, Pumford NR, LaRosa AC, Martin BM, Gonzaga HM, Beaven MA, Pohl LR (1991) A metabolite of halothane covalently binds to an endoplasmic reticulum protein that is highly homologous to phosphatidylinositol-specific phospholipase C-alpha but has no activity. Biochem Biophys Res Commun 178:679–685

    Article  CAS  PubMed  Google Scholar 

  142. Pohl LR, Thomassen D, Pumford NR, Butler LE, Satoh H, Ferrans VJ, Perrone A et al (1991) Hapten carrier conjugates associated with halothane hepatitis. Adv Exp Med Biol 283:111–120

    CAS  PubMed  Google Scholar 

  143. Lecoeur S, André C, Beaune PH (1996) Tienilic acid-induced autoimmune hepatitis: anti-liver and -kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol 50:326–333

    CAS  PubMed  Google Scholar 

  144. Bourdi M, Tinel M, Beaune PH, Pessayre D (1994) Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol Pharmacol 45:1287–1295

    CAS  PubMed  Google Scholar 

  145. Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499, Review

    Article  CAS  PubMed  Google Scholar 

  146. Goodsaid F, Frueh F (2007) Biomarker qualification pilot process at the US Food and Drug Administration. AAPS J 9:E105–E108

    Article  CAS  PubMed  Google Scholar 

  147. Ozer JS, Chetty R, Kenna G, Palandra J, Zhang Y, Lanevschi A, Koppiker N, Souberbielle BE, Ramaiah SK (2010) Enhancing the utility of alanine aminotransferase as a reference standard biomarker for drug-induced liver injury. Regul Toxicol Pharmacol 56:237–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Medical Research Council for the Centre of Drug Safety Science (Grant Number: G0700654), Association of the British Pharmaceutical Industry and British Toxicological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh G. Laverty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laverty, H.G., Antoine, D.J., Benson, C. et al. The potential of cytokines as safety biomarkers for drug-induced liver injury. Eur J Clin Pharmacol 66, 961–976 (2010). https://doi.org/10.1007/s00228-010-0862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0862-x

Keywords

Navigation