Skip to main content

Advertisement

Log in

Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

The role of vascular endothelium in cardiovascular disorders is well recognized. Mature endothelial cells contribute to the repair of endothelial injury, but they only have a limited capacity to do so. This has led to growing interest and further investigation into circulating endothelial progenitor cells (EPCs) and their role in vascular healing, repair, and postnatal neovascularization. The current perception of vascular health is that of a balance between ongoing injury and resultant vascular repair, mediated at least in part by circulating EPCs. Circulating EPCs play an important role in accelerating endothelialization at areas of vascular damage, and EPC enumeration is a viable strategy for assessing reparative capacity. Recent studies have shown that EPCs are affected both in number and function by several cardiovascular risk factors as well as various cardiovascular disease states, such as hypertension, hypercholesterolemia, and coronary artery disease. The present review summarizes the most relevant studies on the effects of cardiovascular drugs on vascular function and EPCs, focusing on their mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landmesser U, Hornig B, Drexler H (2004) Endothelial function: a critical determinant in atherosclerosis? Circulation 109:II-27–33

    Google Scholar 

  2. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  CAS  PubMed  Google Scholar 

  3. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  4. Hadi H, Suwaidi J (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3:853–876

    CAS  PubMed  Google Scholar 

  5. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    Article  CAS  PubMed  Google Scholar 

  6. Félétou M, Vanhoutte P (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291:H985–H1002

    Article  PubMed  Google Scholar 

  7. Pola R, Gaetani E, Flex A, Aprahamian T, Bosch-Marcé M, Losordo D, Smith R, Pola P (2008) Comparative analysis of the in vivo angiogenic properties of stable prostacyclin analogs: a possible role for peroxisome proliferator-activated receptors. J Mol Cell Cardiol 36:363–370

    Article  Google Scholar 

  8. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109: III-27–32

    Google Scholar 

  9. Yang Z, Ming X-F (2006) Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res 4:53–65

    Article  PubMed  Google Scholar 

  10. Lerman A, Zeiher AM (2005) Endothelial function: cardiac events. Circulation 111:363–368

    Article  PubMed  Google Scholar 

  11. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    CAS  PubMed  Google Scholar 

  12. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner J (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  13. Umemura T, Higashi Y (2008) Endothelial progenitor cells: therapeutic target for cardiovascular diseases. J Pharmacol Sci 108:1–6

    Article  CAS  PubMed  Google Scholar 

  14. Wassmann S, Werner N, Czech T, Nickenig G (2006) Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res 99:E74–E83

    Article  CAS  PubMed  Google Scholar 

  15. Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ (2004) Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110:2039–2046

    Article  CAS  PubMed  Google Scholar 

  16. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    Article  CAS  PubMed  Google Scholar 

  17. Khoo C, Pozzilli P, Alison M (2008) Endothelial progenitor cells and their potential therapeutic applications. Regen Med 3:863–876

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  19. Semenza GL (2006) Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 10:267–280

    Article  CAS  PubMed  Google Scholar 

  20. Real C, Caiado F, Dias S (2008) Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets 8:185–193

    Article  CAS  PubMed  Google Scholar 

  21. Geft D, Schwartzenberg S, George J (2008) Circulating endothelial progenitor cells in cardiovascular disorders. Expert Rev Cardiovasc Ther 6:1115–1121

    Article  PubMed  Google Scholar 

  22. Yamahara K, Itoh H (2009) Potential use of endothelial progenitor cells for regeneration of the vasculature. Ther Adv Cardiovasc Dis 3:17–27

    Article  PubMed  Google Scholar 

  23. Hristov M, Weber C (2008) Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res 58:148–151

    Article  CAS  PubMed  Google Scholar 

  24. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MAS, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  25. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103:2885–2890

    Article  CAS  PubMed  Google Scholar 

  26. Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D (2005) Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45:526–529

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Zhang F, Tao Q, Wang X, Zhu J, Zhu J (2004) Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond) 107:273–280

    Article  CAS  Google Scholar 

  28. Badimon L, Martínez-González J, Llorente-Cortés V, Rodríguez C, Padró T (2006) Cell biology and lipoproteins in atherosclerosis. Curr Mol Med 6:439–456

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez C, Slevin M, Rodríguez-Calvo R, Kumar S, Krupinski J, Tejerina T, Martínez-González J (2009) Modulation of endothelium and endothelial progenitor cell function by low-density lipoproteins: implication for vascular repair, angiogenesis and vasculogenesis. Pathobiology 76:11–22

    Article  PubMed  Google Scholar 

  30. Dimmeler S, Haendeler J, Galle J, Zeiher AM (1997) Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases: a mechanistic clue to the `Response to Injury’ hypothesis. Circulation 95:1760–1763

    CAS  PubMed  Google Scholar 

  31. Kume N, Kita T (2004) Apoptosis of vascular cells by oxidized LDL: involvement of caspases and LOX-1 and its implication in atherosclerotic plaque rupture. Circ Res 94:269–270

    Article  CAS  PubMed  Google Scholar 

  32. Ii M, Losordo D (2007) Statins and the endothelium. Vascul Pharmacol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  33. Bustos C, Hernández-Presa M, Ortego M, Tuñón J, Ortega L, Pérez F, Díaz C, Hernández G, Egido J (1998) HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol 32:2057–2064

    Article  CAS  PubMed  Google Scholar 

  34. Lacoste L, Lam JYT, Hung J, Letchacovski G, Solymoss CB, Waters D (1995) Hyperlipidemia and coronary disease: correction of the increased thrombogenic potential with cholesterol reduction. Circulation 92:3172–3177

    CAS  PubMed  Google Scholar 

  35. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271

    Article  CAS  PubMed  Google Scholar 

  36. Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, Kosinski AS, Zhang J, Boccuzzi SJ, Cedarholm JC, Alexander RW (1995) Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 332:481–487

    Article  CAS  PubMed  Google Scholar 

  37. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    CAS  PubMed  Google Scholar 

  38. Laufs U, Marra D, Node K, Liao JK (1999) 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing Rho GTPase-induced down-regulation of p27Kip1. J Biol Chem 274:21926–21931

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Gonzalez J, Raposo B, Rodriguez C, Badimon L (2001) 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition prevents endothelial NO synthase downregulation by atherogenic levels of native LDLs: balance between transcriptional and posttranscriptional regulation. Arterioscler Thromb Vasc Biol 21:804–809

    CAS  PubMed  Google Scholar 

  40. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rütten H, Fichtlscherer S, Martin H, Zeiher A (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    CAS  PubMed  Google Scholar 

  41. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner J, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. J Clin Invest 108:399–405

    CAS  PubMed  Google Scholar 

  42. Landmesser U, Bahlmann F, Mueller M, Spiekermann S, Kirchhoff N, Schulz S, Manes C, Fischer D, de Groot K, Fliser D, Fauler G, Marz W, Drexler H (2005) Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation 111:2356–2363

    Article  CAS  PubMed  Google Scholar 

  43. Pirro M, Schillaci G, Romagno PF, Mannarino MR, Bagaglia F, Razzi R, Pasqualini L, Vaudo G, Mannarino E (2009) Influence of short-term rosuvastatin therapy on endothelial progenitor cells and endothelial function. J Cardiovasc Pharmacol Ther 14:14–21

    Article  CAS  PubMed  Google Scholar 

  44. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  CAS  PubMed  Google Scholar 

  45. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024

    Article  CAS  PubMed  Google Scholar 

  46. Minami Y, Satoh M, Maesawa C, Takahashi Y, Tabuchi T, Itoh T, Nakamura M (2009) Effect of atorvastatin on microRNA 221 / 222 expression in endothelial progenitor cells obtained from patients with coronary artery disease. Eur J Clin Invest 39:359–367

    Article  CAS  PubMed  Google Scholar 

  47. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939

    Article  CAS  PubMed  Google Scholar 

  48. Spyridopoulos I, Haendeler J, Urbich C, Brummendorf TH, Oh H, Schneider MD, Zeiher AM, Dimmeler S (2004) Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110:3136–3142

    Article  CAS  PubMed  Google Scholar 

  49. Corsini A, Pazzucconi F, Pfister P, Paoletti R, Sirtori C (1996) Inhibitor of proliferation of arterial smooth-muscle cells by fluvastatin Lancet 348:1584

  50. Sata M, Nishimatsu H, Suzuki E, Sugiura S, Yoshizumi M, Ouchi Y, Hirata Y, Nagai R (2001) Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibitor cerivastatin to promote collateral growth in response to ischemia. FASEB J 15:2530–2532

    CAS  PubMed  Google Scholar 

  51. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Itoh T, Nakamura M (2009) Effect of intensive lipid-lowering therapy on telomere erosion in endothelial progenitor cells obtained from patients with coronary artery disease. Clin Sci (Lond) 116:827–835

    Article  CAS  Google Scholar 

  52. Walter D, Zeiher A, Dimmeler S (2004) Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron Artery Dis 15:235–242

    Article  PubMed  Google Scholar 

  53. Brouet A, Sonveaux P, Dessy C, Balligand J-L, Feron O (2001) Hsp90 ensures the transition from the early Ca2+−dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 276:32663–32669

    Article  CAS  PubMed  Google Scholar 

  54. Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, Spyridopoulos I, Zeiher AM, Dimmeler S (2003) HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 92:1049–1055

    Article  CAS  PubMed  Google Scholar 

  55. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283:1321–1325

    Article  CAS  PubMed  Google Scholar 

  56. Spyridopoulos I, Isner J, Losordo D (2002) Oncogenic ras induces premature senescence in endothelial cells: role of p21(Cip1/Waf1). Basic Res Cardiol 97:117–124

    Article  CAS  PubMed  Google Scholar 

  57. Ben-Porath I, Weinberg R (2004) When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113:8–13

    CAS  PubMed  Google Scholar 

  58. Ferreira M, Miller K, Cooper J (2004) Indecent exposure: when telomeres become uncapped. Mol Cell 13:7–18

    Article  CAS  PubMed  Google Scholar 

  59. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449

    Article  CAS  PubMed  Google Scholar 

  60. Gerber H-P, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the Phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343

    Article  CAS  PubMed  Google Scholar 

  61. Morales-Ruiz M, Fulton D, Sowa G, Languino LR, Fujio Y, Walsh K, Sessa WC (2000) Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ Res 86:892–896

    CAS  PubMed  Google Scholar 

  62. Wassmann S, Nickenig G (2006) Pathophysiological regulation of the AT1-receptor and implications for vascular disease. J Hypertens Suppl 24:S15–S21

    Article  CAS  PubMed  Google Scholar 

  63. Nickenig G, Harrison DG (2002) The AT1-type angiotensin receptor in oxidative stress and atherogenesis: part I: oxidative stress and atherogenesis. Circulation 105:393–396

    Article  CAS  PubMed  Google Scholar 

  64. Werner C, Baumhäkel M, Teo K, Schmieder R, Mann J, Unger T, Yusuf S, Böhm M (2008) RAS blockade with ARB and ACE inhibitors: current perspective on rationale and patient selection. Clin Res Cardiol 97:418–431

    Article  CAS  PubMed  Google Scholar 

  65. Okunishi H, Miyazaki M, Toda N (1984) Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall. J Hypertens 2:277–284

    Article  CAS  PubMed  Google Scholar 

  66. Vinh A, Widdop RE, Drummond GR, Gaspari TA (2008) Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovasc Res 77:178–187

    Article  CAS  PubMed  Google Scholar 

  67. Ferrario C (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst 7:3–14

    Article  CAS  PubMed  Google Scholar 

  68. Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109:603–611

    CAS  PubMed  Google Scholar 

  69. Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, Sugaya T, Ishii M, Akagi T, Ikeda H, Matsuishi T, Imaizumi T (2003) Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112:67–75

    CAS  PubMed  Google Scholar 

  70. Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104

    Article  CAS  PubMed  Google Scholar 

  71. Oberleithner H, Ludwig T, Riethmuller C, Hillebrand U, Albermann L, Schafer C, Shahin V, Schillers H (2004) Human endothelium: target for aldosterone. Hypertension 43:952–956

    Article  CAS  PubMed  Google Scholar 

  72. Schiffrin EL (2006) Effects of aldosterone on the vasculature. Hypertension 47:312–318

    Article  CAS  PubMed  Google Scholar 

  73. Marumo T, Uchimura H, Hayashi M, Hishikawa K, Fujita T (2006) Aldosterone impairs bone marrow-derived progenitor cell formation. Hypertension 48:490–496

    Article  CAS  PubMed  Google Scholar 

  74. The OI (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559

    Article  Google Scholar 

  75. Wang C, Verma S, Hsieh I, Chen Y, Kuo L, Yang N, Wang S, Wu M, Hsu C, Cheng C, Cherng W (2006) Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol 41:34–43

    Article  CAS  PubMed  Google Scholar 

  76. Min TQ, Zhu CJ, Xiang WX, Hui ZJ, Peng SY (2004) Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease. Cardiovasc Drugs Ther 18:203–209

    Article  CAS  PubMed  Google Scholar 

  77. Boyle AJ, Schuster M, Witkowski P, Guosheng X, Seki T, Way K, Itescu S (2005) Additive effects of endothelial progenitor cells combined with ACE inhibition and {beta}-blockade on left ventricular function following acute myocardial infarction. J Renin Angiotensin Aldosterone Syst 6:33–37

    Article  CAS  PubMed  Google Scholar 

  78. You D, Cochain C, Loinard C, Vilar J, Mees B, Duriez M, Levy BI, Silvestre J-S (2008) Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats. J Pharmacol Exp Ther 325:766–773

    Article  CAS  PubMed  Google Scholar 

  79. Chen M, Ichiki T, Ohtsubo H, Imayama I, Inanaga K, Miyazaki R, Sunagawa K (2007) Inhibition of balloon injury-induced neointimal formation by olmesartan and pravastatin in rats with insulin resistance. Hypertens Res 30:971–978

    Article  CAS  PubMed  Google Scholar 

  80. Porto I, Di Vito L, De Maria G, Dato I, Tritarelli A, Leone A, Niccoli G, Capogrossi M, Biasucci L, Crea F (2009) Comparison of the effects of ramipril versus telmisartan on high-sensitivity C-reactive protein and endothelial progenitor cells after acute coronary syndrome. Am J Cardiol 103:1500–1505

    Article  CAS  PubMed  Google Scholar 

  81. Yao E-H, Fukuda N, Matsumoto T, Kobayashi N, Katakawa M, Yamamoto C, Tsunemi A, Suzuki R, Ueno T, Matsumoto K (2007) Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res 30:1119–1128

    Article  PubMed  Google Scholar 

  82. Yu Y, Fukuda N, Yao E-H, Matsumoto T, Kobayashi N, Suzuki R, Tahira Y, Ueno T, Matsumoto K (2008) Effects of an ARB on endothelial progenitor cell function and cardiovascular oxidation in hypertension. Am J Hypertens 21:72–77

    Article  CAS  PubMed  Google Scholar 

  83. Dahlöf B, Devereux R, Kjeldsen S, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm L, Nieminen M, Omvik P, Oparil S, Wedel H, Group LS (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:995–1003

    Article  PubMed  Google Scholar 

  84. Fliser D, Buchholz K, Haller H, for the EToO, Pravastatin in I, Atherosclerosis I (2004) Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 110:1103–1107

    Google Scholar 

  85. Schupp M, Clemenz M, Gineste R, Witt H, Jr J, Helleboid S, Hennuyer N, Ruiz P, Unger T, Staels B, Kintscher U (2005) Molecular characterization of new selective peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking activity. Diabetes 54:3442–3452

    Article  CAS  PubMed  Google Scholar 

  86. Beattie MS, Shlipak MG, Liu H, Browner WS, Schiller NB, Whooley MA (2003) C-reactive protein and ischemia in users and nonusers of {beta}-blockers and statins: data from the heart and soul study. Circulation 107:245–250

    Article  CAS  PubMed  Google Scholar 

  87. Zanchetti A, Bond MG, Hennig M, Neiss A, Mancia G, Dal Palu C, Hansson L, Magnani B, Rahn K-H, Reid JL, Rodicio J, Safar M, Eckes L, Rizzini P, on behalf of the Ei (2002) Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation 106:2422–2427

    Google Scholar 

  88. Ando H, Nakanishi K, Shibata M, Hasegawa K, Yao K, Miyaji H (2006) Benidipine, a dihydropyridine-Ca2+ channel blocker, increases the endothelial differentiation of endothelial progenitor cells in vitro. Hypertens Res 29:1047–1054

    Article  CAS  PubMed  Google Scholar 

  89. Benndorf RA, Gehling UM, Appel D, Maas R, Schwedhelm E, Schlagner K, Silberhorn E, Hossfeld DK, Rogiers X, Böger R (2007) Mobilization of putative high-proliferative-potential endothelial colony-forming cells during antihypertensive treatment in patients with essential hypertension. Stem Cells Dev 16:329–338

    Article  CAS  PubMed  Google Scholar 

  90. Passacquale G, Desideri G, Croce G, Murgo S, Mancarelli MM, Zazzeroni F, Alesse E, Ferri C (2008) Nifedipine improves the migratory ability of circulating endothelial progenitor cells depending on manganese superoxide dismutase upregulation. J Hypertens 26:737–746

    Article  CAS  PubMed  Google Scholar 

  91. Yao E-H, Fukuda N, Matsumoto T, Katakawa M, Yamamoto C, Han Y, Ueno T, Kobayashi N, Matsumoto K (2008) Effects of the antioxidative [beta]-blocker celiprolol on endothelial progenitor cells in hypertensive rats. Am J Hypertens 21:1062–1068

    Article  CAS  PubMed  Google Scholar 

  92. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  CAS  PubMed  Google Scholar 

  93. Jung O, Marklund SL, Geiger H, Pedrazzini T, Busse R, Brandes RP (2003) Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ Res 93:622–629

    Article  CAS  PubMed  Google Scholar 

  94. DiFabio JM, Thomas GR, Zucco L, Kuliszewski MA, Bennett BM, Kutryk MJ, Parker JD (2006) Nitroglycerin attenuates human endothelial progenitor cell differentiation, function, and survival. J Pharmacol Exp Ther 318:117–123

    Article  CAS  PubMed  Google Scholar 

  95. Thum T, Fraccarollo D, Thum S, Schultheiss M, Daiber A, Wenzel P, Munzel T, Ertl G, Bauersachs J (2007) Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress. Arterioscler Thromb Vasc Biol 27:748–754

    Article  CAS  PubMed  Google Scholar 

  96. Jurt U, Gori T, Ravandi A, Babaei S, Zeman P, Parker JD (2001) Differential effects of pentaerythritol tetranitrate and nitroglycerin on the development of tolerance and evidence of lipid peroxidation: a human in vivo study. J Am Coll Cardiol 38:854–859

    Article  CAS  PubMed  Google Scholar 

  97. Antithrombotic Trialists’ Collaboration (2002) Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br Med J 324:71–86

    Article  Google Scholar 

  98. Mehta J (1998) Salutary effects of aspirin in coronary artery disease are not limited to its platelet inhibitory effects. Clin Cardiol 21:879–884

    Article  CAS  PubMed  Google Scholar 

  99. Kharbanda RK, Walton B, Allen M, Klein N, Hingorani AD, MacAllister RJ, Vallance P (2002) Prevention of inflammation-induced endothelial dysfunction: a novel vasculo-protective action of aspirin. Circulation 105:2600–2604

    Article  CAS  PubMed  Google Scholar 

  100. Chen T, Chen J, Xie X (2006) Effects of aspirin on number, activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood. Acta Pharmacol Sin 27:430–436

    Article  CAS  PubMed  Google Scholar 

  101. Hu Z, Zhang F, Yang Z, Zhang J, Zhang D, Yang N, Zhang Y, Cao K (2008) Low-dose aspirin promotes endothelial progenitor cell migration and adhesion and prevents senescence. Cell Biol Int 32:761–768

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália António.

Rights and permissions

Reprints and permissions

About this article

Cite this article

António, N., Fernandes, R., Rodriguez-Losada, N. et al. Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs. Eur J Clin Pharmacol 66, 219–230 (2010). https://doi.org/10.1007/s00228-009-0764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0764-y

Keywords

Navigation