Skip to main content

Advertisement

Log in

Influence of pharmacogenetics on indinavir disposition and short-term response in HIV patients initiating HAART

  • Special Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Aims

To assess the relationship between genetic polymorphisms and indinavir pharmacokinetic variability and to study the link between concentrations and short-term response or metabolic safety.

Methods

Forty protease inhibitor-naive patients initiating highly active antiretroviral therapy (HAART) including indinavir/ritonavir and enrolled in the COPHAR 2–ANRS 111 trial were studied. At week 2, four blood samples were taken before and up to 6 h following drug intake. A population pharmacokinetic analysis was performed using the stochastic approximation expectation maximization (SAEM) algorithm implemented in MONOLIX software. The area under the concentration–time curve (AUC) and maximum (Cmax) and trough concentrations (Ctrough) of indinavir were derived from the population model and tested for their correlation with short-term viral response and safety measurements, while for ritonavir, these same three parameters were tested for their correlation with short-term biochemical safety

Results

A one-compartment model with first-order absorption and elimination best described both indinavir and ritonavir concentrations. For indinavir, the estimated clearance and volume of distribution were 22.2 L/h and 97.3 L, respectively. The eight patients with the *1B/*1B genotype for the CYP3A4 gene showed a 70% decrease in absorption compared to those with the *1A/*1B or *1A/*1A genotypes (0.5 vs. 2.1, P = 0.04, likelihood ratio test by permutation). The indinavir AUC and Ctrough were positively correlated with the decrease in human immunodeficiency virus RNA between week 0 and week 2 (r = 0.4, P = 0.03 and r = -0.4, P = 0.03, respectively). Patients with the *1B/*1B genotype also had a significantly lower indinavir Cmax (median 3.6, range 2.1–5.2 ng/mL) than those with the *1A/*1B or *1A/*1A genotypes (median 4.4, range 2.2–8.3 ng/mL) (P = 0.04) and a lower increase in triglycerides during the first 4 weeks of treatment (median 0.1, range −0.7 to 1.4 vs. median 0.6, range −0.5 to 1.7 mmol/L, respectively; P = 0.02). For ritonavir, the estimated clearance and volume of distribution were 8.3 L/h and 60.7 L, respectively, and concentrations were not found to be correlated to biochemical safety. Indinavir and ritonavir absorption rate constants were found to be correlated, as well as their apparent volumes of distribution and clearances, indicating correlated bioavailability of the two drugs.

Conclusion

The CYP3A4*1B polymorphism was found to influence the pharmacokinetics of indinavir and, to some extent, the biochemical safety of indinavir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solas C, Lafeuillade A, Halfon P et al (2003) Discrepancies between protease inhibitor concentrations and viral load in reservoirs and sanctuary sites in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 47:238–243

    Article  PubMed  CAS  Google Scholar 

  2. Letendre S, Marquie-Beck J, Capparelli E et al (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65:65–70

    Article  PubMed  Google Scholar 

  3. Collin F, Chêne G, Retout S, Peytavin G, Salmon D, Bouvet E, Raffi F, Garraffo R, Mentré F, Duval X, ANRS CO8 Aproco-Copilote Study Group (2007) Indinavir trough concentration as a determinant of early nephrolithiasis in HIV-1-infected adults. Ther Drug Monit 29:164–170

    Article  PubMed  CAS  Google Scholar 

  4. Flexner C (1998) HIV-protease inhibitors. N Engl J Med 338:1281–1292

    Article  PubMed  CAS  Google Scholar 

  5. Von Moltke LL, Greenblatt DJ, Grassi JM et al (1998) Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 38:106–111

    Google Scholar 

  6. Hsu A, Granneman GR, Bertz RJ (1998) Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35:275–291

    Article  PubMed  CAS  Google Scholar 

  7. Soriano V, Garcya-Gasco P, Vispo E, Ruiz-Sancho A, Blanco F, Martyn-Carbonero L, Rodryguez-Novoa S, Morello J, de Mendoza C, Rivas P, Barreiro P, Gonzalez-Lahoz J (2008) Efficacy and safety of replacing lopinavir with atazanavir in HIV-infected patients with undetectable plasma viraemia: final results of the SLOAT trial. J Antimicrob Chemother 61:200–205

    Article  PubMed  CAS  Google Scholar 

  8. Collot-Teixeira S, De Lorenzo F, Waters L, Fletcher C, Back D, Mandalia S, Pozniak A, Yilmaz S, McGregor JL, Gazzard B, Boffito M (2009) Impact of different low-dose ritonavir regimens on lipids, CD36, and adipophilin expression. Clin Pharmacol Ther 85(4):375–378

    Google Scholar 

  9. Csajka C, Marzolini C, Fattinger K et al (2004) Population pharmacokinetics of indinavir in patients infected with human immunodeficiency virus. Antimicrob Agents Chemother 48:3226–32

    Google Scholar 

  10. Brendel K, Legrand M, Taburet A et al (2005) Population pharmacokinetic analysis of indinavir in hiv-infected patient treated with a stable antiretroviral therapy. Fundam Clin Pharmacol 19:373–383

    Article  PubMed  CAS  Google Scholar 

  11. Kappelhoff BS, Huitema ADR, Sankatsing SUC et al (2005) Population pharmacokinetics of indinavir alone and in combination with ritonavir in HIV-1-infected patients. Br J Clin Pharmacol 60:276–286

    Article  PubMed  CAS  Google Scholar 

  12. Solas C, Simon N, Drogoul MP et al (2007) Minimal effect of MDR1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of indinavir in HIV-infected patients. Br J Clin Pharmacol 64:353–362

    Article  PubMed  CAS  Google Scholar 

  13. Verstuyft C, Marcellin F, Morand-Joubert L et al (2005) Absence of association between MDR1 genetic polymorphisms, indinavir pharmacokinetics and response to highly active antiretroviral therapy. AIDS 19:2127–2131

    Article  PubMed  CAS  Google Scholar 

  14. Anderson PL, Lamba J, Aquilante CL et al (2006) Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr 42:441–449

    Article  PubMed  CAS  Google Scholar 

  15. Lamba JK, Lin YS, Schuetz EG et al (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliver Rev 54:1271–1294

    Article  CAS  Google Scholar 

  16. Lichterfeld M, Nischalke HD, Bergmann F et al (2002) Long-term efficacy and safety of ritonavir/indinavir at 400/400 mg twice a day in combination with two nucleoside reverse transcriptase inhibitors as first line antiretroviral therapy. HIV Med 3:37–43

    Article  PubMed  CAS  Google Scholar 

  17. Duval X, Mentre F, Lamotte C et al (2005) Indinavir plasma concentration and adherence score are codeterminant of early virologic response in HIV-infected patients of the APROCO cohort. Ther Drug Monit 27:63–70

    Article  PubMed  CAS  Google Scholar 

  18. Dieleman JP, Gyssens IC, van der Ende ME et al (1999) Urological complaints in relation to indinavir plasma concentrations in HIV-infected patients. AIDS 13:473–478

    Article  PubMed  CAS  Google Scholar 

  19. Duval X, Mentré F, Rey E et al (2009) Benefit of therapeutic drug monitoring of protease inhibitors in HIV-infected patients depends on PI used in HAART regimen—ANRS 111 trial. Fundam Clin Pharmacol (in press)

  20. Hirt D, Mentré F, Tran A et al (2008) Effect of CYP2C19 polymorphism on nelfinavir to M8 biotransformation in HIV patients. Br J Clin Pharmacol 65:548–557

    Article  PubMed  CAS  Google Scholar 

  21. Carrieri P, Cailleton V, Le Moing V et al (2001) The dynamic of adherence to highly active antiretroviral therapy: results from the french national APROCO Cohort. J Acq Immun Def Synd 28:232–239

    CAS  Google Scholar 

  22. Cascorbi I, Gerloff T, Johne A et al (2001) Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 69:169–174

    Article  PubMed  CAS  Google Scholar 

  23. Dally H, Edler L, Jager B et al (2003) The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 13:607–618

    Article  PubMed  CAS  Google Scholar 

  24. Crow J (1999) Hardy, Weinberg and language impediments. Genetics 152:821–825

    PubMed  CAS  Google Scholar 

  25. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  26. Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49:1020–1038

    Article  Google Scholar 

  27. Lavielle M (2008) MONOLIX (MOdèles NOn LInéaires à effets miXtes). MONOLIX group, Orsay, France. Available at: http://software.monolix.org/index.php

    Google Scholar 

  28. Lavielle M, Mentré F (2007) Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J Pharmacokinet Pharmacodyn 34:229–249

    Article  PubMed  CAS  Google Scholar 

  29. Gelman A, Carlin JB, Stern HS et al (1995) Bayesian data analysis. Chapman & Hall, London

    Google Scholar 

  30. Bertrand J, Comets E, Mentré F (2008) Comparison of model-based tests and selection strategies to detect genetic polymorphisms influencing pharmacokinetic parameters. J Biopharm Stat 18:1084–1102

    Article  PubMed  Google Scholar 

  31. Manly B (1998) Randomization. bootstrap and Monte Carlo methods in biology. Chapman & Hall, London

    Google Scholar 

  32. Goujard C, Legrand M, Panhard X et al (2005) High variability of indinavir and nelfinavir pharmacokinetics in HIV-infected patients with a sustained virological response on highly active antiretroviral therapy. Clin Pharmacokinet 44:1267–1278

    Article  PubMed  CAS  Google Scholar 

  33. Fuhr U, Jetter A, Kirchheiner J (2007) Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther 81:270–283

    Article  PubMed  CAS  Google Scholar 

  34. Ikezoe T, Hisatake Y, Takeuchi T et al (2004) HIV-1 protease inhibitor, ritonavir: a potent inhibitor of CYP3A4, enhanced the anticancer effects of docetaxel in androgen-independent prostate cancer cells in vitro and in vivo. Cancer Res 64:7426–7431

    Article  PubMed  CAS  Google Scholar 

  35. Zhou S, Yung Chan S, Cher Goh B et al (2005) Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 44:279–304

    Article  PubMed  CAS  Google Scholar 

  36. Rittweger M, Arastéh K (2007) Clinical pharmacokinetics of darunavir. Clin Pharmacokinet 46:739–756

    Article  PubMed  CAS  Google Scholar 

  37. Spurdle A, Goodwin B, Hodgson E et al (2002) The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 12:355–366

    Article  PubMed  CAS  Google Scholar 

  38. He P, Court MH, Greenblatt DJ et al (2005) Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 77:373–387

    Article  PubMed  CAS  Google Scholar 

  39. Hesselink DA, van Schaik RH, van der Heiden IP et al (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 74:245–254

    Article  PubMed  CAS  Google Scholar 

  40. Tran A, Jullien V, Alexandre J et al (2006) Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 79:570–580

    Article  PubMed  CAS  Google Scholar 

  41. Amirimani B, Ning B, Deitz AC et al (2003) Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 42:299–305

    Article  PubMed  CAS  Google Scholar 

  42. Yeh K, Stone J, Carides A et al (1999) Simultaneous investigation of indinavir nonlinear pharmacokinetics and bioavailability in healthy volunteers using stable isotope labeling technique: study design and model-independent data analysis. J Pharm Sci 88:568–573

    Article  PubMed  CAS  Google Scholar 

  43. Lu JF, Blaschke TF, Flexner C et al. (2002) Model-based analysis of the pharmacokinetic interactions between ritonavir, nelfinavir and saquinavir after simultaneous and staggered oral administration. Drug Metab Dispos 30:1455–1461

    Google Scholar 

  44. Kappelhoff BS, Huitema ADR, Crommentuyn KML et al (2005) Development and validation of a population pharmacokinetic model for ritonavir used as a booster or as an antiviral agent in HIV-1-infected patients. Br J Clin Pharmacol 59:174–182

    Article  PubMed  CAS  Google Scholar 

  45. Schön A, del Mar Ingaramo M, Freire E (2003) The binding of HIV-1 protease inhibitors to human serum proteins. Biophys Chem 105:221–230

    Article  PubMed  Google Scholar 

  46. Jones K, Hoggard PG, Khoo S et al (2001) Effect of alpha1-acid glycoprotein on the intracellular accumulation of the HIV protease inhibitors saquinavir, ritonavir and indinavir in vitro. Br J Clin Pharmacol 51:99–102

    Article  PubMed  CAS  Google Scholar 

  47. Zhang X, Schooley R, Gerber J (1999) The effect of increasing alpha1-acid glycoprotein concentration on the antiviral efficacy of human immunodeficiency virus protease inhibitors. J Infect Dis 180:1833–1837

    Article  PubMed  CAS  Google Scholar 

  48. Samson A, Lavielle M, Mentré F (2006) Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model. Comput Stat Data Anal 51:1562–1574

    Article  Google Scholar 

  49. Fletcher CV (1999) Pharmacologic considerations for therapeutic success with antiretroviral agents. Ann Pharmacother 33:989–995

    Article  PubMed  CAS  Google Scholar 

  50. Burger DM, Hugen PWH, Aarnoutse RE et al (2001) A retrospective, cohort-based survey of patients using twice-daily indinavir+ritonavir combinations: pharmacokinetics, safety and efficacy. J Acquir Immune Defic Syndr 26:218–224

    Article  PubMed  CAS  Google Scholar 

  51. Rayner CR, Galbraith KJ, Marriott JL et al (2002) A critical evaluation of the therapeutic range of indinavir. Ann Pharmacother 36:1230–1237

    Article  PubMed  CAS  Google Scholar 

  52. Behrens G, Dejam A, Schmidt H et al (1999) Impaired glucose tolerance, beta cell function, and lipid metabolism: HIV patients under treatment with protease inhibitors. AIDS 13:F63–F70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Steering committee of the COPHAR2 ANRS-111 trial: principal investigators: D. Salmon- Céron, X. Duval, statistics: F. Mentré; other members: S. Auleley, M. Biour, M.J. Commoy, B. Diquet, C. Goujard, C. Katlama, C. Lascoux, M. Legrand, A. Métro, G. Peytavin, E. Rey, A.M. Taburet, J.M. Tre´luyer.

Safety committee: S. Auleley, M. Biour, A. Métro, C. Lascoux, D. Salmon-Céron. Pharmacological monitoring committee: X. Duval, E. Rey, J.M. Tréluyer. Independent committee: C. Rouzioux, C. Piketti, P. Flandre, M. Zenut, P. Marquet.

Clinical centers: Dr. Bentata, Dr. Mansouri, Mme Touam, Pr. Sereni, Dr. Lascoux, Dr. Pintado, Dr. Goujard, Mme Mole, Dr. Sellier, Dr. Bendenoun, Dr. Rami, Mme Parrinello, Dr. Jeantils, Mme Tassi, Pr. Vittecoq, Dr. Teicher, Mme Mallet, Pr. Dupont, Dr. Lahoulou, Soeur Azar, Pr. Rosembaum, Dr. Slama, Dr. Naï-Ighil Baakili, Dr. Courtial-Destembert, Pr. Vildé, Pr. Leport, Dr. Duval, Dr. Al Kaied, Pr. Salmon, Dr. Spiridon, Dr. Lesprit, Mme Chesnel, Pr. Katlama, Dr. Schneider, Mme Schoen, Pr. Molina, Dr. Ponscarme, Dr. Colin de verdière, Pr. Morlat, Dr. Bonarek, Dr. Joly, Dr. Ralaimazava, Mme Meridda, Mme Le Gac, P. Raffi, Dr. Allavena, Mme Hüe, Mme Sicot, Dr. Perré, Dr. Leautez, Dr. Aubry, Mme Suaud, Pr. Dellamonica, Dr. Rahelinirina, Pr. Michelet, Dr. Bouvier, Pr. Bazin, Dr. Goubin, Pr. May, Dr. Boyer, Pr. Rouveix, Dr. Dupont, Mme Berthé.

Pharmacological centers: Dr. Rey, Pr. Tréluyer, Dr. Abbara, Dr. Audoul, Dr. Tran, Dr. Sauvageon, Dr. Poirier, Dr. Taburet, Dr. Vincent, Dr. Aymard, Dr. Peytavin, Dr. Lamotte, Dr. Dailly, Dr. Garraffo, Dr. Lavrut, Dr. Mollimard, Dr. Titier, Dr. Tribut, Dr. Hulin, Dr. Huet, Dr. Delhotal, Dr. Hoizey.

Virological centers: Pr. Nicolas-Chanoine, Dr. Sousan, Pr. Dény, Dr. Baazia, Dr. Alloui, Pr. Brun-Vézinet, Dr. Chams, Pr. Fleury, Dr. Pellegrin, Dr. Garrigue, Pr. Fremut, Dr. Vabret, Pr. Lebon, Dr. Krivine, Pr. Calvez, Dr. Gourlain, Dr. Amellal, Pr. Bouvier-Alias, Pr. Norman, Dr. Idri, Pr. Chambreuil, Dr. Poirier, Pr. Mazeron, Pr. Le Faou, Dr. Vénard, Pr. Billaudel, Dr. Ferre, Pr. Rouzioux, Dr. Burgard, Pr. Lefevre, Dr. Cottalorda, Pr. Dussaix, Dr. Bensidhoum, Pr. Colimon, Dr. Ruffault, Dr. Maillard, Pr. Morinet, Dr. Palmer, Pr. Nicolas, Dr. Zalta.

Monitoring: S. Auleley, E. Marcault, F. Mentré. Statistics: E. Bougen, F. Mentré, X. Panhard.

The authors thank the study participants and the Agence de Recherche Nationale sur le SIDA (ANRS, Essai 111) for financial support.

We also acknowledge Dr. Emmanuelle Comets, Pr. Marc Lavielle and Dr. Emmanuelle Génin for their valuable advices during the analysis.

J. Bertrand was supported by a grant from Servier Research Group, France.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Julie Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, J., Treluyer, JM., Panhard, X. et al. Influence of pharmacogenetics on indinavir disposition and short-term response in HIV patients initiating HAART. Eur J Clin Pharmacol 65, 667–678 (2009). https://doi.org/10.1007/s00228-009-0660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0660-5

Keywords

Navigation