Skip to main content

Advertisement

Log in

Pharmacokinetics and penetration of linezolid into inflamed soft tissue in diabetic foot infections

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Physiological changes and local and systemic inflammation may affect plasma and tissue pharmacokinetics of antimicrobial agents in diabetics. The aim of the study was to investigate the penetration of linezolid into inflamed areas of infected diabetic foot wounds and the pharmacokinetics in the risk population of diabetics.

Methods

Pharmacokinetics and tissue penetration of linezolid into inflamed diabetic foot infection (DFI) tissue were determined at steady state in 15 patients with diabetes type 2 and DFI following administration of multiple oral doses of 600 mg given every 12 h. Second debridement was performed on days 4–6, 3 h after linezolid administration. Linezolid concentrations were determined in perinecrotic wound tissue of inflamed diabetic foot by high-performance liquid chromatography (HPLC).

Results

A mean maximum plasma concentration (Cmax) in plasma of 14.3 mg/L was attained at a median of 2.0 h [time to reach Cmax (Tmax) range 0.5–6.0 h). Area under the concentration time curve from zero to 12 h (AUC0–12 h) with a mean of 114.1 mg∙h/L and Cmin of 5.4 mg/L were achieved in patients with diabetes mellitus type 2. Penetration of linezolid into inflamed areas of DFI with tissue/plasma ratios of mean 101.7% [95% confidence interval (CI) 56; 148%] produced a mean concentration of 9.6 μg/g (95% CI 7.4; 11.8 μg/g) greater than those predicted to be effective against methicillin-resistant staphylococci [minimum concentration that inhibits 90% of organisms (MIC90) of 4 mg/L]. Tissue/plasma ratios correlated positive with systemic inflammation.

Conclusion

Plasma pharmacokinetics of linezolid in diabetics and adequate levels in inflamed areas of diabetic foot wound suggest that an oral dose of 600 mg bd of linezolid provides effective concentrations for treating methicillin-resistant Staphylococcus aureus (MRSA) in DFI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

Cmax :

Maximum plasma concentration

Cmin :

Minimum plasma concentration

DFI:

Diabetic foot infection

DFS:

Diabetic foot syndrome

ECG:

12-lead electrocardiogram

EDTA:

Ethylenediamine tetraacetic acid

EOT visit:

End-of-treatment visit

MIC:

Minimum inhibitory concentration

MIC90 :

Minimum concentration that inhibits 90% of organisms

MRSA:

Methicillin-resistant Staphylococcus aureus

PK/PD:

Pharmacokinetic/pharmacodynamic

PO:

Per os

r:

Coefficient of correlation

t 1/2:

Terminal half life

References

  1. Citron DM, Goldstein EJ, Merriam CV, Lipsky BA, Abramson MA (2007) Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J Clin Microbiol 45(9):2819–2828

    Article  PubMed  Google Scholar 

  2. Goldstein EJ, Citron DM, Nesbit CA (1996) Diabetic foot infections. Bacteriology and activity of 10 oral antimicrobial agents against bacteria isolated from consecutive cases. Diabetes Care 19(6):638–641

    Article  PubMed  CAS  Google Scholar 

  3. Lipsky BA, Berendt AR, Deery HG, Embil JM, Joseph WS, Karchmer AW, LeFrock JL, Lew DP, Mader JT, Norden C, Tan JS (2004) Diagnosis and treatment of diabetic foot infections. Clin Infect Dis 39(7):885–910

    Article  PubMed  Google Scholar 

  4. Lipsky BA (2007) Empirical therapy for diabetic foot infections: are there clinical clues to guide antibiotic selection? Clin Microbiol Infect 13(4):351–353

    Article  PubMed  CAS  Google Scholar 

  5. Lipsky BA, Itani K, Norden C, Linezolid Diabetic Foot Infections Study Group (2004) Treating foot infections in diabetic patients: a randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin Infect Dis 38(1):17–24

    Article  PubMed  CAS  Google Scholar 

  6. Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C, Linezolid CSSTI Study Group (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49(6):2260–2266

    Article  PubMed  CAS  Google Scholar 

  7. Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH, Schentag JJ (1998) Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 42:521–527

    PubMed  CAS  Google Scholar 

  8. Bellmann R, Kuchling G, Dehghanyar P, Minar E, Mayer BX, Müller M, Joukhadar C (2004) Tissue pharmacokinetics of levofloxacin in human soft tissue infections. Br J Clin Pharmacol 57(5):563–568

    Article  PubMed  CAS  Google Scholar 

  9. Brunner M, Derendorf H, Müller M (2005) Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr Opin Pharmacol 5(5):495–499

    Article  PubMed  CAS  Google Scholar 

  10. Dehghanyar P, Burger C, Zeitlinger M, Islinger F, Kovar F, Muller M, Kloft C, Joukhadar C (2005) Penetration of linezolid into soft tissues of healthy volunteers after single and multiple doses. Antimicrob Agents Chemother 49(6):2367–2371

    Article  PubMed  CAS  Google Scholar 

  11. Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, Eichler HG, Müller M (2001) Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29:385–391

    Article  PubMed  CAS  Google Scholar 

  12. Peng GW, Stryd RP, Murata S, Igarashi M, Chiba K, Aoyama H, Aoyama M, Zenki T, Ozawa N (1999) Determination of linezolid in plasma by reversed-phase high-performance liquid chromatography. J Pharm Biomed Anal 20:65–73

    Article  PubMed  CAS  Google Scholar 

  13. Schubert JK, Miekisch W, Fuchs P, Scherzer N, Lord H, Pawliszyn J, Mundkowski RG (2007) Determination of antibiotic drug concentrations in circulating human blood by means of solid phase micro-extraction. Clin Chim Acta 386(1–2):57–62

    Article  PubMed  CAS  Google Scholar 

  14. Dang CN, Prasad YD, Boulton AJ, Jude EB (2003) Methicillin-resistant Staphylococcus aureus in the diabetic foot clinic: a worsening problem. Diabet Med 20(2):159–161

    Article  PubMed  CAS  Google Scholar 

  15. Tentolouris N, Petrikkos G, Vallianou N, Zachos C, Daikos GL, Tsapogas P, Markou G, Katsilambros N (2006) Prevalence of methicillin-resistant Staphylococcus aureus in infected and uninfected diabetic foot ulcers. Clin Microbiol Infect 12(2):186–189

    Article  PubMed  CAS  Google Scholar 

  16. Fiscella RG, Lai WW, Buerk B, Khan M, Rodvold KA, Pulido JS, Labib S, Shapiro MJ, Blair NP (2004) Aqueous and vitreous penetration of linezolid (Zyvox) after oral administration. Ophthalmology 111(6):1191–1195

    Article  PubMed  Google Scholar 

  17. Conte JE, Golden JA, Kipps J, Zurlinden E (2002) Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother 46(5):1475–1480

    Article  PubMed  CAS  Google Scholar 

  18. Gee T, Ellis R et al (2001) Pharmacokinetics and tissue penetration of linezolid following multiple oral doses. Antimicrob Agents Chemother 45(6):1843–1846

    Article  PubMed  CAS  Google Scholar 

  19. Rana B, Butcher I, Grigoris P, Murnaghan C, Seaton RA, Tobin CM (2002) Linezolid penetration into osteo-articular tissues. J Antimicrob Chemother 50(5):747–750

    Article  PubMed  CAS  Google Scholar 

  20. Rao GG, Steger A, Tobin CM (2001) Linezolid levels in pancreatic secretions. J Antimicrob Chemother 48(6):931–932

    Article  PubMed  CAS  Google Scholar 

  21. Pascual A, Ballesta S, Garcia I, Perea EJ (2002) Uptake and intracellular activity of linezolid in human phagocytes and nonphagocytic cells. Antimicrob Agents Chemother 46(12):4013–4015

    Article  PubMed  CAS  Google Scholar 

  22. Boselli E, Breilh D, Rimmele T, Djabarouti S, Toutain J, Chassard D, Saux MC, Allaouchiche B (2005) Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia. Crit Care Med 33(7):1529–1533

    Article  PubMed  CAS  Google Scholar 

  23. Hachem R, Afif C, Gokaslan Z, Raad I (2001) Successful treatment of vancomycin-resistant Enterococcus meningitis with linezolid. Eur J Clin Microbiol Infect Dis 20(6):432–434

    Article  PubMed  CAS  Google Scholar 

  24. Honeybourne D, Tobin C, Jevons G, Andrews J, Wise R (2003) Intrapulmonary penetration of linezolid. J Antimicrob Chemother 51(6):1431–1434

    Article  PubMed  CAS  Google Scholar 

  25. Lovering AM, Zhang J, Bannister GC, Lankester BJ, Brown JH, Narendra G, MacGowan AP (2002) Penetration of linezolid into bone, fat, muscle and haematoma of patients undergoing routine hip replacement. J Antimicrob Chemother 50(1):73–77

    Article  PubMed  CAS  Google Scholar 

  26. Ford C, Hamel J, Stapert D, Moerman J, Hutchinson H, Barbachyn M, Zurenko G (1999) Oxazolidinones: a new class of antimicrobials. Infect Med 16:435–445

    Google Scholar 

  27. Slatter JG, Adams LA, Bush EC, Chiba K, Daley-Yates PT, Feenstra KL, Koike S, Ozawa N, Peng GW, Sams JP, Schuette MR, Yamazaki S (2002) Pharmacokinetics, toxicokinetics, distribution, metabolism and excretion of linezolid in mouse, rat and dog. Xenobiotica 32(10):907–924

    Article  PubMed  CAS  Google Scholar 

  28. Buerger C, Plock N, Dehghanyar P et al (2006) Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother 50:2455–2463

    Article  PubMed  CAS  Google Scholar 

  29. Stein GE, Schooley S, Peloquin CA, Missavage A, Havlichek DH (2007) Linezolid tissue penetration and serum activity against strains of methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility in diabetic patients with foot infections. J Antimicrob Chemother 60(4):819–823

    Article  PubMed  CAS  Google Scholar 

  30. Joukhadar C, Klein N, Mayer BX, Kreischitz N, Delle-Karth G, Palkovits P, Heinz G, Müller M (2002) Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med 30:1478–1482

    Article  PubMed  CAS  Google Scholar 

  31. Joukhadar C, Klein N, Dittrich P, Zeitlinger M, Geppert A, Skhirtladze K, Frossard M, Heinz G, Müller M (2003) Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother 51:1247–1252

    Article  PubMed  CAS  Google Scholar 

  32. Bjornsson ES, Urbanavicius V, Eliasson B, Attvall S, Smith U, Abrahamsson H (1994) Effects of hyperglycemia on interdigestive gastrointestinal motility in humans. Scand J Gastroenterol 29(12):1096–1104

    Article  PubMed  CAS  Google Scholar 

  33. Groop LC, Luzi L, DeFronzo RA, Melander A (1989) Hyperglycaemia and absorption of sulphonylurea drugs. Lancet 2(8655):129–130

    Article  PubMed  CAS  Google Scholar 

  34. MacGowan AP (2003) Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother 51(Suppl 2):17–25

    Google Scholar 

  35. Brier ME, Stalker DJ et al (2003) Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob Agents Chemother 47(9):2775–2780

    Article  PubMed  CAS  Google Scholar 

  36. Wise R (2000) Clinical efficacy and antimicrobial pharmacodynamics. Hosp Med 61:24–30

    PubMed  CAS  Google Scholar 

  37. Andes D, van Ogtrop ML, Peng J, Craig WA (2002) In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 46(11):3484–3489

    Article  PubMed  CAS  Google Scholar 

  38. Boak LM, Li J, Rayner CR, Nation RL (2007) Pharmacokinetic/pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother 51(4):1287–1292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. K. Kroesche for her skilful analytical assistance and Mrs. A. Bruss for data management. This work was supported in part by a research grant from Pharmacia, Erlangen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Majcher-Peszynska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majcher-Peszynska, J., Haase, G., Saß, M. et al. Pharmacokinetics and penetration of linezolid into inflamed soft tissue in diabetic foot infections. Eur J Clin Pharmacol 64, 1093–1100 (2008). https://doi.org/10.1007/s00228-008-0531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0531-5

Keywords

Navigation