Skip to main content
Log in

Semi-quantitative CYP2D6 gene doses in relation to metabolic ratios of psychotropics

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Genetic polymorphisms in cytochrome P450 (CYP) enzyme CYP2D6 have a substantial effect on the success of pharmacotherapy. Different models, including a predicted-phenotype model and a semi-quantitative gene dose (SGD) model, have been developed based on CYP genotype. The objective of this study was to investigate the surplus value of the SGD model in predicting the metabolic ratios (MRs) of the psychotropics venlafaxine, fluoxetine and risperidone.

Methods

Phenotype prediction and semi-quantitative gene doses were conducted after genotyping for CYP2D6 *3, *4, *5, *6, *9, *10, *41 and gene multiplication.

Results

The predicted-phenotype and SGD model showed increasing mean MRs with increasing predicted metabolic activity and decreasing SGD values, respectively, for all three psychotropics. The reliability of MR prediction was higher for the SGD model.

Conclusions

Both models are suitable for venlafaxine, fluoxetine and risperidone. In this study, a surplus value of semi-quantitative gene dose model was present, but small, for all three psychotropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brøsen K, De Morais SMF, Meyer UA, Goldstein JA (1995) A multifamily study on the relationship between CYP2C19 genotype and s-mephenytoin oxidation phenotype. Pharmacogenetics 5:312–317

    Article  PubMed  Google Scholar 

  2. Chou WH, Yan FX, Robbins-Weilert DK, Ryder TB, Liu WW, Perbost C et al (2003) Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships. Clin Chem 49:542–551

    Article  PubMed  CAS  Google Scholar 

  3. Dahl ML, Johansson I, Palmertz MP, Ingelman-Sundberg M, Sjöqvist F (1992) Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population. Clin Pharmacol Ther 51:12–17

    PubMed  CAS  Google Scholar 

  4. Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Morike K et al (1998) Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 8:15–26

    Article  PubMed  CAS  Google Scholar 

  5. van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE (2005) Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 27:478–483

    Article  PubMed  Google Scholar 

  6. Kootstra-Ros JE, van Weelden MJM, Hinrichs JWJ, De Smet PA, van der Weide J (2006) Therapeutic drug monitoring of antidepressants and cytochrome P450 genotyping in general practice. J Clin Pharmacol 46:1320–1327

    Article  PubMed  CAS  Google Scholar 

  7. Kirchheiner J, Brøsen K, Dahl ML, Gram LF, Kasper S, Roots I et al (2001) CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 104:173–192

    Article  PubMed  CAS  Google Scholar 

  8. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmöller J (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473

    Article  PubMed  CAS  Google Scholar 

  9. Gaedigk A, Ryder DL, Bradford LD, Leeder JS (2003) CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin Chem 49:1008–1011

    Article  PubMed  CAS  Google Scholar 

  10. Raimundo S, Fischer J, Eichelbaum M, Griese EU, Schwab M, Zanger UM (2000) Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 10:577–581

    Article  PubMed  CAS  Google Scholar 

  11. Raimundo S, Toscano C, Klein K, Fischer J, Griese EU, Eichelbaum M et al (2004) A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 76:128–138

    Article  PubMed  CAS  Google Scholar 

  12. Steimer W, Zöpf K, Von Amelunxen S, Pfeiffer H, Bachofer J, Popp J et al (2004) Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 50:1623–1633

    Article  PubMed  CAS  Google Scholar 

  13. Steimer W, Zöpf K, Von Amelunxen S, Pfeiffer H, Bachofer J, Popp J et al (2005) Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 51:376–385

    Article  PubMed  CAS  Google Scholar 

  14. Geadigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83:234

    Article  Google Scholar 

  15. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM (1996) Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 41:149–156

    Article  PubMed  CAS  Google Scholar 

  16. Veefkind AH, Haffmans PM, Hoencamp E (2000) Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 22:202–208

    Article  PubMed  CAS  Google Scholar 

  17. Lessard E, Yessine MA, Hamelin BA, O’Hara G, LeBlanc J, Turgeon J (1999) Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 9:435–443

    Article  PubMed  CAS  Google Scholar 

  18. Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M, Baumann P (2001) Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 21:330–334

    Article  PubMed  CAS  Google Scholar 

  19. Hamelin BA, Turgeon J, Vallee F, Belanger P-M, Paquet F, LeBel M (1996) The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 60:512–521

    Article  PubMed  CAS  Google Scholar 

  20. Huang ML, Van Peer A, Woestenborghs R, De Coster R, Heykants J, Jansen AA, Zylicz Z, Visscher HW, Jonkman JH (1993) Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin Pharmacol Ther 54:257–268

    PubMed  CAS  Google Scholar 

  21. Scordo MG, Spina E, Facciolà G, Avenoso A, Johansson I, Dahl ML (1999) Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 147:300–305

    Article  CAS  Google Scholar 

  22. Fang J, Bourin M, Baker GB (1999) Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedeberg’s Arch Pharmacol 359:147–151

    Article  CAS  Google Scholar 

  23. Fogelman SM, Schmider J, Venkatakrishnan K, von Moltke LL, Harmatz JS, Shader RI, Greenblatt DJ (1999) O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 20:480–490

    Article  PubMed  CAS  Google Scholar 

  24. Liu ZQ, Zhu B, Tan YF, Tan ZR, Wang LS, Huang SL, Shu Y, Zhou HH (2002) O-Dealkylation of fluoxetine in relation to CYP2C19 gene dose and involvement of CYP3A4 in human liver microsomes. J Pharmacol Exp Ther 300:105–111

    Article  PubMed  CAS  Google Scholar 

  25. Liu ZQ, Shu Y, Huang SL, Wang LS, He N, Zhou HH (2001) Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin 22:85–90

    PubMed  CAS  Google Scholar 

  26. Hicks DR, Wolaniuk D, Russell A, Cavanaugh N, Kraml M (1994) A high-performance liquid chromatographic method for the simultaneous determination of venlafaxine and O-desmethylvenlafaxine in biological fluids. Ther Drug Monit 16:100–107

    Article  PubMed  CAS  Google Scholar 

  27. Kristoffersen L, Bugge A, Lundanes E, Slordal L (1999) Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma and whole blood by high-performance liquid chromatography with ultraviolet and fluorescence detection. J Chromatogr B Biomed Sci Appl 734:229–246

    Article  PubMed  CAS  Google Scholar 

  28. Avenoso A, Facciola G, Salemi M, Spina E (2000) Determination of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma by reversed-phase liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 746:173–181

    Article  PubMed  CAS  Google Scholar 

  29. Hersberger M, Marti-Jaun J, Rentsch K, Hanseler E (2000) Rapid detection of the CYP2D6*3, CYP2D6*4, and CYP2D6*6 alleles by tetra-primer PCR and of the CYP2D6*5 allele by multiplex long PCR. Clin Chem 46:1072–1077

    PubMed  CAS  Google Scholar 

  30. Hinrichs JWJ, Smallegoor WD, van Baalen-Benedek EH, Welker C, van der Weide J (2007) Detection of CYP2D6 polymorphisms *9, *10, and *41 using ARMS-PCR and their allelic frequencies among 400 psychiatric patients. Clin Chem Lab Med 45:555–557

    Article  PubMed  CAS  Google Scholar 

  31. Lundqvist E, Johansson I, Ingelman-Sundberg M (1999) Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226:327–338

    Article  PubMed  CAS  Google Scholar 

  32. Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K, Azuma J (1999) Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 47:450–453

    Article  PubMed  CAS  Google Scholar 

  33. Yu A, Kneller BM, Rettie AE, Haining RL (2002) Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J Pharmacol Exp Ther 303:1291–1300

    Article  PubMed  CAS  Google Scholar 

  34. Roh HK, Kim CE, Chung WG, Park CS, Svensson JO, Bertilsson L (2001) Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 57:671–675

    Article  PubMed  CAS  Google Scholar 

  35. Raimundo S, Toscano C, Klein K, Fischer J, Griese EU, Eichelbaum M, Schwab M, Zanger UM (2004) A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther 76:128–138

    Article  PubMed  CAS  Google Scholar 

  36. Toscano C, Klein K, Blievernicht J, Schaeffeler E, Saussele T, Raimundo S, Eichelbaum M, Schwab M, Zanger UM (2006) Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics 16:755–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Erica van Baalen-Benedek, Windy Smallegoor, Chris Welker and Elsbeth Bannink, St Jansdal Hospital, for their help with obtaining the genetic and metabolic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van der Weide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinrichs, J.W.J., Loovers, H.M., Scholten, B. et al. Semi-quantitative CYP2D6 gene doses in relation to metabolic ratios of psychotropics. Eur J Clin Pharmacol 64, 979–986 (2008). https://doi.org/10.1007/s00228-008-0509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0509-3

Keywords

Navigation