Skip to main content
Log in

Prevalence of UGT1A9 and UGT2B7 nonsynonymous single nucleotide polymorphisms in West African, Papua New Guinean, and North American populations

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

UDP-glucuronosyltransferases (UGTs) UGT1A9 and UGT2B7 are involved in the metabolism of antimalarial dihydroartemisinin and antiretroviral zidovudine. Our aim was to analyze the prevalence of UGT1A9 (chromosome 2) and UGT2B7 (chromosome 4) nonsynonymous single nucleotide polymorphisms (SNPs) in West African (WA), Papua New Guinean (PNG), and North American (NA) populations.

Methods

Using a post-PCR ligation detection reaction-fluorescent microsphere assay, frequencies of UGT1A9 (8G > A, 98T > C, 766G > A) and UGT2B7 (211G > T, 802C > T, 1192G > A) SNPs were determined in WA (n = 133, 5 countries), PNG (n = 153), and NA (n = 350, 4 ethnic groups) individuals.

Results

The UGT1A9 variant alleles were not common in the study populations. None of the SNPs were present in WA and PNG. Among NA, all 3 SNPs were present (1% each) in Asian-Americans, while 98T > C was present only in Caucasian-Americans (1%) and Hispanic-Americans (1%). Regarding UGT2B7 SNPs, the prevalence of 802C > T was 21% in WA, 28% in PNG, and 28–52% in NA. The SNP 211G > T was present only in Asian-Americans (9%) and Hispanic-Americans (2%), while 1192G > A was not present in any of the subjects. No significant linkage was observed at UGT1A9, UGT2B7, and between both the loci in any of the study populations.

Conclusions

Taken together, the UGT1A9-UGT2B7 polymorphism profile in WA and PNG populations is similar to African-Americans, but different from Asian-Americans. It is important to determine if these differences, along with previously reported differences in cytochrome P450 2B6 allele frequencies, are associated with altered metabolism/effectiveness of artemisinin drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3:136–158

    Article  PubMed  CAS  Google Scholar 

  2. Nagar S, Remmel RP (2006) Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene 25:1659–1672

    Article  PubMed  CAS  Google Scholar 

  3. Burchell B, Coughtrie MW (1989) UDP-glucuronosyltransferases. Pharmacol Ther 43:261–289

    Article  PubMed  CAS  Google Scholar 

  4. Ilett KF, Ethell BT, Maggs JL, Davis TM, Batty KT, Burchell B, Binh TQ, Thu le TA, Hung NC, Pirmohamed M, Park BK, Edwards G (2002) Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 30:1005–1012

    Article  PubMed  CAS  Google Scholar 

  5. Price RN (2000) Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs 9:1815–1827

    Article  PubMed  CAS  Google Scholar 

  6. Balint GA (2001) Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol Ther 90:261–265

    Article  PubMed  CAS  Google Scholar 

  7. White NJ (1994) Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 88:S41–S43

    Article  PubMed  Google Scholar 

  8. Olliaro PL, Taylor WR (2004) Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: a review. J Postgrad Med 50:40–44

    PubMed  CAS  Google Scholar 

  9. Davis TM, Karunajeewa HA, Ilett KF (2005) Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust 182:181–185

    PubMed  Google Scholar 

  10. Barbier O, Turgeon D, Girard C, Green MD, Tephly TR, Hum DW, Belanger A (2000) 3’-azido-3’-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos 28:497–502

    PubMed  CAS  Google Scholar 

  11. Mutlib AE, Chen H, Nemeth GA, Markwalder JA, Seitz SP, Gan LS, Christ DD (1999) Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz. Drug Metab Dispos 27:1319–1333

    PubMed  CAS  Google Scholar 

  12. Riska P, Lamson M, MacGregor T, Sabo J, Hattox S, Pav J, Keirns J (1999) Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos 27:895–901

    PubMed  CAS  Google Scholar 

  13. Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, Kubota S, Carvalho S, Pennington MW, Owens IS, Popescu NC (2001) Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11:357–368

    Article  PubMed  CAS  Google Scholar 

  14. Villeneuve L, Girard H, Fortier LC, Gagne JF, Guillemette C (2003) Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther 307:117–128

    Article  PubMed  CAS  Google Scholar 

  15. Jinno H, Saeki M, Saito Y, Tanaka-Kagawa T, Hanioka N, Sai K, Kaniwa N, Ando M, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Ozawa S, Sawada J (2003) Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther 306:688–693

    Article  PubMed  CAS  Google Scholar 

  16. Saeki M, Saito Y, Jinno H, Sai K, Komamura K, Ueno K, Kamakura S, Kitakaze M, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Ozawa S, Sawada J (2003) Three novel single nucleotide polymorphisms in UGT1A9. Drug Metab Pharmacokinet 18:146–149

    Article  PubMed  CAS  Google Scholar 

  17. Carrier JS, Turgeon D, Journault K, Hum DW, Belanger A (2000) Isolation and characterization of the human UGT2B7 gene. Biochem Biophys Res Commun 272:616–621

    Article  PubMed  CAS  Google Scholar 

  18. Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H, Yamasaki A, Takeuchi H, Masada M, Shimizu E, Higuchi S, Otsubo K (2003) Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 31:677–680

    Article  PubMed  CAS  Google Scholar 

  19. Saeki M, Saito Y, Jinno H, Tanaka-Kagawa T, Ohno A, Ozawa S, Ueno K, Kamakura S, Kamatani N, Komamura K, Kitakaze M, Sawada J (2004) Single nucleotide polymorphisms and haplotype frequencies of UGT2B4 and UGT2B7 in a Japanese population. Drug Metab Dispos 32:1048–1054

    PubMed  CAS  Google Scholar 

  20. Saito K, Moriya H, Sawaguchi T, Hayakawa T, Nakahara S, Goto A, Arimura Y, Imai K, Kurosawa N, Owada E, Miyamoto A (2006) Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem 39:303–308

    Article  PubMed  CAS  Google Scholar 

  21. Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T, Miners JO (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10:679–685

    Article  PubMed  CAS  Google Scholar 

  22. Lampe JW, Bigler J, Bush AC, Potter JD (2000) Prevalence of polymorphisms in the human UDP-glucuronosyltransferase 2B family: UGT2B4(D458E), UGT2B7(H268Y), and UGT2B15(D85Y). Cancer Epidemiol Biomarkers Prev 9:329–333

    PubMed  CAS  Google Scholar 

  23. Talisuna AO, Staedke SG, D’Alessandro U (2006) Pharmacovigilance of antimalarial treatment in Africa: is it possible? Malar J 5:50

    Article  PubMed  Google Scholar 

  24. Zimmerman PA, Dadzie KY, De Sole G, Remme J, Alley ES, Unnasch TR (1992) Onchocerca volvulus DNA probe classification correlates with epidemiologic patterns of blindness. J Infect Dis 165:964–968

    PubMed  CAS  Google Scholar 

  25. Mehlotra RK, Kasehagen LJ, Baisor M, Lorry K, Kazura JW, Bockarie MJ, Zimmerman PA (2002) Malaria infections are randomly distributed in diverse holoendemic areas of Papua New Guinea. Am J Trop Med Hyg 67:555–562

    PubMed  Google Scholar 

  26. Zimmerman PA, Woolley I, Masinde GL, Miller SM, McNamara DT, Hazlett F, Mgone CS, Alpers MP, Genton B, Boatin BA, Kazura JW (1999) Emergence of FY*A(null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc Natl Acad Sci USA 96:13973–13977

    Article  PubMed  CAS  Google Scholar 

  27. Mehlotra RK, Ziats MN, Bockarie MJ, Zimmerman PA (2006) Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea. Eur J Clin Pharmacol 62:267–275

    Article  PubMed  Google Scholar 

  28. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98

    Article  PubMed  CAS  Google Scholar 

  29. Halperin E, Eskin E (2004) Haplotype reconstruction from genotype data using Imperfect Phylogeny. Bioinformatics 20:1842–1849

    Article  PubMed  CAS  Google Scholar 

  30. Pacifici GM, Evangelisti L, Giuliani L, Metelli RM, Giordani R (1996) Zidovudine glucuronidation in human liver: interindividual variability. Int J Clin Pharmacol Ther 34:329–334

    PubMed  CAS  Google Scholar 

  31. Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, Greenblatt DJ (2003) Evaluation of 3’-azido-3’-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31:1125–1133

    Article  PubMed  CAS  Google Scholar 

  32. Holthe M, Klepstad P, Zahlsen K, Borchgrevink PC, Hagen L, Dale O, Kaasa S, Krokan HE, Skorpen F (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58:353–356

    Article  PubMed  CAS  Google Scholar 

  33. Holthe M, Rakvag TN, Klepstad P, Idle JR, Kaasa S, Krokan HE, Skorpen F (2003) Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J 3:17–26

    Article  PubMed  CAS  Google Scholar 

  34. Coffman BL, Rios GR, King CD, Tephly TR (1997) Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 25:1–4

    PubMed  CAS  Google Scholar 

  35. Coffman BL, King CD, Rios GR, Tephly TR (1998) The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 26:73–77

    PubMed  CAS  Google Scholar 

  36. Sawyer MB, Innocenti F, Das S, Cheng C, Ramirez J, Pantle-Fisher FH, Wright C, Badner J, Pei D, Boyett JM, Cook E Jr, Ratain MJ (2003) A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther 73:566–574

    Article  PubMed  CAS  Google Scholar 

  37. Duguay Y, Baar C, Skorpen F, Guillemette C (2004) A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin Pharmacol Ther 75:223–233

    Article  PubMed  CAS  Google Scholar 

  38. Burchell B, Lockley DJ, Staines A, Uesawa Y, Coughtrie MW (2005) Substrate specificity of human hepatic UDP-glucuronosyltransferases. Methods Enzymol 400:46–57

    PubMed  CAS  Google Scholar 

  39. Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol 400:104–116

    PubMed  CAS  Google Scholar 

  40. Bernard O, Guillemette C (2004) The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos 32:775–778

    Article  PubMed  CAS  Google Scholar 

  41. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C (2004) Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14:501–515

    Article  PubMed  CAS  Google Scholar 

  42. Kuypers DR, Naesens M, Vermeire S, Vanrenterghem Y (2005) The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther 78:351–361

    Article  PubMed  CAS  Google Scholar 

  43. Krishna S, Planche T, Agbenyega T, Woodrow C, Agranoff D, Bedu-Addo G, Owusu-Ofori AK, Appiah JA, Ramanathan S, Mansor SM, Navaratnam V (2001) Bioavailability and preliminary clinical efficacy of intrarectal artesunate in Ghanaian children with moderate malaria. Antimicrob Agents Chemother 45:509–516

    Article  PubMed  CAS  Google Scholar 

  44. Angus BJ, Thaiaporn I, Chanthapadith K, Suputtamongkol Y, White NJ (2002) Oral artesunate dose-response relationship in acute falciparum malaria. Antimicrob Agents Chemother 46:778–782

    Article  PubMed  CAS  Google Scholar 

  45. Karunajeewa HA, Ilett KF, Dufall K, Kemiki A, Bockarie M, Alpers MP, Barrett PH, Vicini P, Davis TM (2004) Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother 48:2966–2972

    Article  PubMed  CAS  Google Scholar 

  46. Hien TT, Davis TM, Chuong LV, Ilett KF, Sinh DX, Phu NH, Agus C, Chiswell GM, White NJ, Farrar J (2004) Comparative pharmacokinetics of intramuscular artesunate and artemether in patients with severe falciparum malaria. Antimicrob Agents Chemother 48:4234–4239

    Article  PubMed  CAS  Google Scholar 

  47. Bethell DB, Teja-Isavadharm P, Cao XT, Pham TT, Ta TT, Tran TN, Nguyen TT, Pham TP, Kyle D, Day NP, White NJ (1997) Pharmacokinetics of oral artesunate in children with moderately severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 91:195–198

    Article  PubMed  CAS  Google Scholar 

  48. McGready R, Stepniewska K, Ward SA, Cho T, Gilveray G, Looareesuwan S, White NJ, Nosten F (2006) Pharmacokinetics of dihydroartemisinin following oral artesunate treatment of pregnant women with acute uncomplicated falciparum malaria. Eur J Clin Pharmacol 62:367–371

    Article  PubMed  CAS  Google Scholar 

  49. Mithwani S, Aarons L, Kokwaro GO, Majid O, Muchohi S, Edwards G, Mohamed S, Marsh K, Watkins W (2004) Population pharmacokinetics of artemether and dihydroartemisinin following single intramuscular dosing of artemether in African children with severe falciparum malaria. Br J Clin Pharmacol 57:146–152

    Article  PubMed  CAS  Google Scholar 

  50. Na-Bangchang K, Krudsood S, Silachamroon U, Molunto P, Tasanor O, Chalermrut K, Tangpukdee N, Matangkasombut O, Kano S, Looareesuwan S (2004) The pharmacokinetics of oral dihydroartemisinin and artesunate in healthy Thai volunteers. Southeast Asian J Trop Med Public Health 35:575–582

    PubMed  CAS  Google Scholar 

  51. Le NH, Na-Bangchang K, Le TD, Thrinh KA, Karbwang J (1999) Phamacokinetics of a single oral dose of dihydroartemisinin in Vietnamese healthy volunteers. Southeast Asian J Trop Med Public Health 30:11–16

    PubMed  CAS  Google Scholar 

  52. Teja-Isavadharm P, Watt G, Eamsila C, Jongsakul K, Li Q, Keeratithakul G, Sirisopana N, Luesutthiviboon L, Brewer TG, Kyle DE (2001) Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg 65:717–721

    PubMed  CAS  Google Scholar 

  53. Teja-Isavadharm P, Nosten F, Kyle DE, Luxemburger C, Ter Kuile F, Peggins JO, Brewer TG, White NJ (1996) Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. Br J Clin Pharmacol 42:599–604

    PubMed  CAS  Google Scholar 

  54. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Chantal Guillemette, Dr. Robert Salata, Dr. Charles King, Dr. Carolyn Myers, Mr. David McNamara, and Ms. Jacquelyn Bales for their comments on the manuscript. Thanks are due to Mr. Mark Ziats for his help during the early stages of this work, and to Ms. Melinda Blood for her excellent technical assistance in extracting genomic DNA from blood samples. This work was supported by grants (AI-52312) from National Institutes of Health and the James B. Pendleton Charitable Trust to PAZ. R.K.M. was supported by Fogarty International Center and in part by a grant (AI-36478) from National Institutes of Health. The experiments comply with the current laws, inclusive of ethics approval, of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Mehlotra.

Electronic supplementary material

Below is the link to the electronic supplentary material.

Table 1

UGT1A9 and UGT2B7 PCR primers and amplifications conditions (PDF 58 kb)

Table 2

LDR primers and microspheres to detect UGT1A9 and UGT2B7 polymorphisms (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehlotra, R.K., Bockarie, M.J. & Zimmerman, P.A. Prevalence of UGT1A9 and UGT2B7 nonsynonymous single nucleotide polymorphisms in West African, Papua New Guinean, and North American populations. Eur J Clin Pharmacol 63, 1–8 (2007). https://doi.org/10.1007/s00228-006-0206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-006-0206-z

Keywords

Navigation