Skip to main content

Advertisement

Log in

Asymmetric dimethylarginine (ADMA): an endogenous inhibitor of angiogenesis

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Endothelium-derived nitric oxide (NO) plays a critical role in angiogenesis. The angiogenic effects of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and other growth factors are mediated to a significant degree by their stimulation of NO release. Angiogenic processes known to be dependent upon NO release include endothelial cell survival, proliferation, migration, and interaction with the extracellular matrix, as well as mobilization of endothelial progenitor cells from the bone marrow. Pharmacological inhibition or genetic disruption of the NO synthase pathway interfere with angiogenesis. Because it is a competitive antagonist of NO synthase, asymmetric dimethylarginine (ADMA) also acts as an endogenous inhibitor of angiogenesis. Conditions that increase plasma ADMA levels impair angiogenesis, whereas therapeutic measures to counteract the influence of ADMA enhance angiogenesis. Manipulation of ADMA generation or metabolism may represent a new therapeutic approach for angiogenesis-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  2. Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 274(3 Pt2):H1054–H1058

    PubMed  CAS  Google Scholar 

  3. van der Zee R, Murohara T, Luo Z, Zollmann F, Passeri J, Lekutat C, Isner JM (1997) Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95:1030–1037

    PubMed  Google Scholar 

  4. Inoue N, Venema RC, Sayegh HS, Ohara Y, Murphy TJ, Harrison DG (1995) Molecular regulation of the bovine endothelial cell nitric oxide synthase by transforming growth factor-beta 1. Arterioscler Thromb Vasc Biol 15:1255–1261

    PubMed  CAS  Google Scholar 

  5. Wu HM, Yuan Y, McCarthy M, Granger HJ (1996) Acidic and basic FGFs dilate arterioles of skeletal muscle through a NO-dependent mechanism. Am J Physiol 271(3 Pt2):H1087–H1093

    PubMed  CAS  Google Scholar 

  6. Tiefenbacher CP, Chilian WM (1997) Basic fibroblast growth factor and heparin influence coronary arteriolar tone by causing endothelium dependent dilation. Cardiovasc Res 34:411–417

    Article  PubMed  CAS  Google Scholar 

  7. Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res 82:1007–1015

    PubMed  CAS  Google Scholar 

  8. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139

    Article  PubMed  CAS  Google Scholar 

  9. Papapetropoulos A, Desai KM, Rudic RD, Mayer B, Zhang R, Ruiz-Torres MP, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol 150:1835–1844

    PubMed  CAS  Google Scholar 

  10. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044

    Article  PubMed  CAS  Google Scholar 

  11. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 99:2625–2634

    Article  PubMed  CAS  Google Scholar 

  12. Dimmeler S, Hermann C, Galle J, Zeiher AM (1999) Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19:656–664

    PubMed  CAS  Google Scholar 

  13. Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274:6823–6826

    Article  PubMed  CAS  Google Scholar 

  14. Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 270(1 Pt 2):H411–H415

    PubMed  CAS  Google Scholar 

  15. Ziche M, Parenti A, Ledda F, Dell'Era P, Granger HJ, Maggi CA, Presta M (1997) Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res 80:845–852

    PubMed  CAS  Google Scholar 

  16. Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 19:1156–1161

    PubMed  CAS  Google Scholar 

  17. Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR, Giaever I, Goligorsky MS (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol 274(1 Pt 1):C236–C244

    PubMed  CAS  Google Scholar 

  18. Ho H-KV, Jang JJ, Kaji S, Spektor G, Fong A, Yang P, Hu RS, Schatzman R, Quertermous T, Cooke JP (2004) Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia. Circulation 109:1314–1319

    Article  PubMed  CAS  Google Scholar 

  19. Hudlicka O (1998) Is physiological angiogenesis in skeletal muscle regulated by changes in microcirculation? Microcirculation 5:7–23

    Article  Google Scholar 

  20. Dulak J, Jozkowicz A, Dembinska-Kiec A, Guevara I, Zdzienicka A, Zmudzinska-Grochot D, Florek I, Wojtowicz A, Szuba A, Cooke JP (2000) Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:659–666

    PubMed  CAS  Google Scholar 

  21. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  PubMed  CAS  Google Scholar 

  22. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  23. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    Article  PubMed  CAS  Google Scholar 

  24. Chen CH, Cartwright J Jr, Li Z, Lou S, Nguyen NH, Gotto AM Jr, Henry PD (1997) Inhibitory effects of hypercholesterolemia and ox-LDL on angiogenesis-like endothelial growth in rabbit aortic explants. Essential role of fibroblast growth factor. Arterioscler Thromb Vasc Biol 17:1303–1312

    PubMed  CAS  Google Scholar 

  25. Chen CH, Henry PD (1997) Atherosclerosis as a microvascular disease: impaired angiogenesis mediated by suppressed basic fibroblast growth factor expression. Proc Assoc Am Physicians 109:351–361

    PubMed  CAS  Google Scholar 

  26. Simon BC, Cunningham LD, Cohen RA (1990) Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Invest 86:75–79

    Article  PubMed  CAS  Google Scholar 

  27. Van Belle E, Rivard A, Chen D, Silver M, Bunting S, Ferrara N, Symes JF, Bauters C, Isner JM (1997) Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96:2667–2674

    PubMed  Google Scholar 

  28. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 10:2567–2578

    Article  Google Scholar 

  29. Ohara Y, Petersen TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    Article  PubMed  CAS  Google Scholar 

  30. Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250(5 Pt 2):H822–H827

    PubMed  CAS  Google Scholar 

  31. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  32. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176

    PubMed  CAS  Google Scholar 

  33. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99:41–46

    Article  PubMed  CAS  Google Scholar 

  34. Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase: a Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273:25804–25808

    Article  PubMed  CAS  Google Scholar 

  35. Kirkwood AP Jr, Groszek L, Smalley DM, Sessa WC, Wu M, Villalon P, Wolin MS, Stemerman MB (1995) Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res 77:510–518

    Google Scholar 

  36. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 95:9220–9225

    Article  PubMed  CAS  Google Scholar 

  37. Huang A, Vita JA, Venema RC, Keaney J (2000) Ascorbic acid enhances endothelial nitric oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275:17399–17406

    Article  PubMed  CAS  Google Scholar 

  38. Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, Luscher TF (1998) Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 97:2494–2498

    PubMed  CAS  Google Scholar 

  39. Liao JK, Shin WS, Lee WY, Clark SL (1995) Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 270:319–324

    Article  PubMed  CAS  Google Scholar 

  40. Lee J, Ryu H, Ferrante RJ, Morris SM, Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci U S A 100:4843–4848

    Article  PubMed  CAS  Google Scholar 

  41. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 20(Suppl 12):S60–S62

    PubMed  CAS  Google Scholar 

  42. Bode-Böger SM, Böger RH, Kienke S, Junker W, Frölich JC (1996) Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun 219:598–603

    Article  PubMed  Google Scholar 

  43. Böger RH, Bode-Böger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction. Its role in hypercholesterolemia. Circulation 98:1842–1847

    PubMed  Google Scholar 

  44. Fajardo LF, Kowalski J, Kwan HH, Prionas SD, Allison AC (1988) Methods in laboratory investigation: the disc angiogenesis system. Lab Invest 58:718–724

    PubMed  CAS  Google Scholar 

  45. Kowalski J, Kwan HH, Prionas SD, Allison AC, Fajardo LF (1992) Characterization and applications of the disc angiogenesis system. Exp Mol Pathol 56:1–19

    Article  PubMed  CAS  Google Scholar 

  46. Jang J, Ho H-K, Kwan HH, Adimoolam S, Fajardo LF, Cooke JP (2000) Angiogenesis is impaired by hypercholesterolemia: role of asymmetric dimethylarginine. Circulation 102:1414–1419

    PubMed  CAS  Google Scholar 

  47. Chan JR, Böger RH, Bode-Böger SM, Tangphao O, Tsao P, Blaschke TF, Cooke JP (2000) Asymmetric dimethylarginine increases mononuclear cell adhesiveness in hypercholesterolemic humans. Arterioscler Thromb Vasc Biol 20:1040–1046

    PubMed  CAS  Google Scholar 

  48. Lundman P, Eriksson MJ, Stuhlinger M, Cooke JP, Hamsten H, Tornvall P (2001) Mild to moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol 38:111–116

    Article  PubMed  CAS  Google Scholar 

  49. Abbasi F, Asagmi T, Cooke JP, Lamendola C, McLaughlin T, Reaven GM, Stuehlinger M, Tsao PS (2001) Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol 88:1201–1203

    Article  PubMed  CAS  Google Scholar 

  50. Stuhlinger MC, Abbasi F, Chu JW, Lamendola C, McLaughlin TL, Cooke JP, Reaven GM, Tsao PS (2002) Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 287:1420–1426

    Article  PubMed  Google Scholar 

  51. Asagami T, Abbasi F, Stuehlinger M, Lamendola C, McLaughlin T, Cooke JP, Reaven GM, Tsao PS (2002) Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism 51:843–846

    Article  PubMed  CAS  Google Scholar 

  52. Stuhlinger MC, Oka RK, Graf EE, Schmolzer I, Upson BM, Kapoor O, Szuba A, Malinow MR, Wascher TC, Pachinger O, Cooke JP (2003) Endothelial dysfunction induced by hyperhomocysteinemia: role of ADMA. Circulation 108:933–938

    Article  PubMed  CAS  Google Scholar 

  53. Weis M, Kledal TN, Lin KY, Panchal SN, Gao SZ, Valantine HA, Mocarski ES, Cooke JP (2004) Cytomegalovirus infection impairs the NOS pathway. Role of ADMA in transplant arteriosclerosis. Circulation 109:500–505

    Article  PubMed  CAS  Google Scholar 

  54. MacAllister RJ, Fickling SA, Whitley GSJ, Vallance P (1994) Metabolism of methylarginines by human vasculature: implications for the regulation of nitric oxide synthesis. Br J Pharmacol 112:43–48

    PubMed  CAS  Google Scholar 

  55. MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley GS, Vallance P (1996) Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 119:1533–1540

    PubMed  CAS  Google Scholar 

  56. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP (1999) A novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99:3092–3095

    PubMed  CAS  Google Scholar 

  57. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, Tsuji H, Reaven GM, Cooke JP (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106:987–992

    Article  PubMed  CAS  Google Scholar 

  58. Stuhlinger MC, Tsao PS, Her J-H, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the NO synthase pathway—role of asymmetric dimethylarginine. Circulation 104:2569–2575

    Article  PubMed  CAS  Google Scholar 

  59. Leiper J, Murray-Rust J, McDonald N, Vallance P (2002) S-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc Natl Acad Sci U S A 99:13527–13532

    Article  PubMed  CAS  Google Scholar 

  60. Dayoub H, Achan V, Adimoolam S, Jacobi J, Stuehlinger M, Wang B, Tsao PS, Kimoto M, Vallance P, Patterson AJ, Cooke JP (2003) DDAH regulates NO synthesis: genetic and physiological evidence. Circulation 108:1043–1048

    Article  CAS  Google Scholar 

  61. Kostourou V, Robinson SP, Whitley GS, Griffiths JR (2003) Effects of overexpression of dimethylarginine dimethylaminohydrolase on tumor angiogenesis assessed by susceptibility magnetic resonance imaging. Cancer Res 63:4960–4966

    PubMed  CAS  Google Scholar 

  62. Jacobi J, Sydow K, von Degenfeld G, Zhang Y, Dayoub H, Wang B, Patterson AJ, Kimoto M, Blau HM, Cooke JP (2005) Overexpression of dimethylarginine dimethylaminohydrolase (DDAH) reduces tissue ADMA levels and enhances angiogenesis. Circulation 111:1431–1438

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Heart, Lung and Blood Institute (R01 HL-63685; R01AT/HL00204; P01 AG18784; and PO1AI50153); by NIH grant M01 RR 00070 (General Clinical Research Center, Stanford University School of Medicine); by a National Research Service Award T32 HL07708 from the NHLBI; by Philip Morris USA Inc; and by the Tobacco Related Disease Research Program (7RT-0128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Cooke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, J.P. Asymmetric dimethylarginine (ADMA): an endogenous inhibitor of angiogenesis. Eur J Clin Pharmacol 62 (Suppl 1), 115–121 (2006). https://doi.org/10.1007/s00228-005-0005-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0005-y

Keywords

Navigation